DOI QR코드

DOI QR Code

Effects of Signal Peptide and Adenylate on the Oligomerization and Membrane Binding of Soluble SecA

  • Shin, Ji-Yeun (Department of Molecular Endocrinology, Chonnam National University) ;
  • Kim, Mi-Hee (Department of Biochemistry, College of Veterinary Medicine, Chonnam National University) ;
  • Ahn, Tae-Ho (Department of Biochemistry, College of Veterinary Medicine, Chonnam National University)
  • Received : 2005.12.30
  • Accepted : 2006.03.17
  • Published : 2006.05.31

Abstract

SecA protein, a cytoplasmic ATPase, plays a central role in the secretion of signal peptide-containing proteins. Here, we examined effects of signal peptide and ATP on the oligomerization, conformational change, and membrane binding of SecA. The wild-type (WT) signal peptide from the ribose-binding protein inhibited ATP binding to soluble SecA and stimulated release of ATP already bound to the protein. The signal peptide enhanced the oligomerization of soluble SecA, while ATP induced dissociation of SecA oligomer. Analysis of SecA unfolding with urea or heat revealed that the WT signal peptide induces an open conformation of soluble SecA, while ATP increased the compactness of SecA. We further obtained evidences that the signal peptide-induced oligomerization and the formation of open structure enhance the membrane binding of SecA, whereas ATP inhibits the interaction of soluble SecA with membranes. On the other hand, the complex of membrane-bound SecA and signal peptide was shown to resume nucleotide-binding activity. From these results, we propose that the translocation components affect the degree of oligomerization of soluble SecA, thereby modulating the membrane binding of SecA in early translocation pathway. A possible sequential interaction of SecA with signal peptide, ATP, and cytoplasmic membrane is discussed.

Keywords

References

  1. Ahn, T. and Kim, H. (1994) SecA of Escherichia coli traverses lipid bilayer of phospholipid vesicles. Biochem. Biophys. Res. Comm. 203, 326-330 https://doi.org/10.1006/bbrc.1994.2185
  2. Ahn, T. and Kim, H. (1996) Differential effect of precursor ribose binding protein of Escherichia coli and its signal peptide on the SecA penetration of lipid bilayer. J. Biol. Chem. 271, 12372-12379 https://doi.org/10.1074/jbc.271.21.12372
  3. Ahn, T. and Kim, H. (1998) Effects of nonlamellar-prone lipids on the ATPase activity of SecA bound to model membranes. J. Biol. Chem. 273, 21692-21698 https://doi.org/10.1074/jbc.273.34.21692
  4. Benach, J., Chou, Y.-T., Fak, J. J., Itkin, A., Nicolae, D. D., Smith, P. C., Wittrock, G., Floyd, D. L., Golsaz, C. M., Gierasch, L. M. and Hunt, J. F. (2003) Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem. 278, 3628-3638 https://doi.org/10.1074/jbc.M205992200
  5. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Breukink, E., Nouwen, N., van Raalte, A., Mizushima, S., Tommassen, J. and de Kruijff, B. (1995) The C terminus of SecA is involved in both lipid binding and SecB binding. J. Biol. Chem. 270, 7902-7907 https://doi.org/10.1074/jbc.270.14.7902
  7. Breukink, E., Demel, R. A., de Korte-Kool, G. and de Kruijff, B. (1992) SecA insertion into phospholipid is stimulated by negatively charged lipids and inhibited by ATP: a monolayer study. Biochemistry 31, 1119-1124 https://doi.org/10.1021/bi00119a021
  8. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M. and Wickner, W. (1990) The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecAdependent precursor protein translocation. Cell 62, 649-657 https://doi.org/10.1016/0092-8674(90)90111-Q
  9. Bu, Z., Wang, L. and Kendall, D. A. (2003) Nucleotide binding induces changes in the oligomeric state and conformation of SecA in a lipid environment: a small-angle neutron-scattering study. J. Mol. Biol. 332, 23-30 https://doi.org/10.1016/S0022-2836(03)00840-4
  10. Cabelli, R. J., Dolan, K. M., Qian, L. and Oliver, D. B. (1991) Characterization of membrane-associated and soluble states of SecA protein from wild-type and SecA51(TS) mutant strains of Escherichia coli. J. Biol. Chem. 266, 24420-24427
  11. Chi, S.-W., Yi, G.-S., Suh, J.-Y., Choi, B.-S. and Kim, H. (1995) Structures of revertant signal sequences of Escherichia coli ribose binding protein. Biophys. J. 69, 2703-2709 https://doi.org/10.1016/S0006-3495(95)80141-4
  12. Collinson, I., Breyton, C., Duong, F., Tziatzios, C., Schubert, D., Or, E., Rapoport, T. and Kuhlbrandt, W. (2001) Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J. 20, 2462-2471 https://doi.org/10.1093/emboj/20.10.2462
  13. Dapic, V. and Oliver, D. (2000) Distinct membrane binding properties of N- and C-terminal domains of Escherichia coli SecA ATPase. J. Biol. Chem. 275, 25000-25007 https://doi.org/10.1074/jbc.M001100200
  14. Dempsey, B. R., Economou, A., Dunn, S. D. and Shilton, B. H. (2002) The ATPase domain of SecA can form a tetramer in solution. J. Mol. Biol. 315, 831-843 https://doi.org/10.1006/jmbi.2001.5279
  15. den Blaauwen, T., Terpetschnig, E., Lakowicz, J. R. and Driessen, A. J. M. (1997) Interaction of SecB with soluble SecA. FEBS Lett. 416, 35-38 https://doi.org/10.1016/S0014-5793(97)01142-3
  16. Ding, H., Mukerji, I. and Oliver, D. (2001) Lipid and signal peptide-induced conformational changes within the C-domain of Escherichia coli SecA protein. Biochemistry 40, 1835-1843 https://doi.org/10.1021/bi002058w
  17. Douville, K., Price, A., Eichler, J., Economou, A. and Wickner, W. (1995) SecYEG and SecA are the stoichiometric components of preprotein translocase. J. Biol. Chem. 270, 20106-20116 https://doi.org/10.1074/jbc.270.34.20106
  18. Doyle, S. M., Braswell, E. H. and Teschke, C. M. (2000) SecA folds via a dimeric intermediate. Biochemistry 39, 11667-11676 https://doi.org/10.1021/bi000299y
  19. Driessen, A. J. (1993) SecA, the peripheral subunit of the Escherichia coli precursor protein translocase, is functional as a dimer. Biochemistry 32, 13190-13197 https://doi.org/10.1021/bi00211a030
  20. Duong, F. (2003) Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375-4384 https://doi.org/10.1093/emboj/cdg418
  21. Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B. and Wickner, W. (1995) SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83, 1171-1181 https://doi.org/10.1016/0092-8674(95)90143-4
  22. Economou, A. and Wickner, W. (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835-843 https://doi.org/10.1016/S0092-8674(94)90582-7
  23. Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P. and Wickner, W. (1990) The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63, 269-279 https://doi.org/10.1016/0092-8674(90)90160-G
  24. Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B. and Deisenhofer, J. (2002) Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018-2026 https://doi.org/10.1126/science.1074424
  25. Kawasaki, H., Matsuyama, S., Sasaki, S., Akita, M. and Mizushima, S. (1989) SecA protein is directly involved in protein secretion in Escherichia coli. FEBS Lett. 242, 431-434 https://doi.org/10.1016/0014-5793(89)80516-2
  26. Keller, R. C., Snel, M. M., de Kruijff, B. and Marsh, D. (1995) SecA restricts, in a nucleotide-dependent manner, acyl chain mobility up to the center of a phospholipid bilayer. FEBS Lett. 358, 251-254 https://doi.org/10.1016/0014-5793(94)01439-8
  27. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. and Candia, O. A. (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100, 95-97 https://doi.org/10.1016/0003-2697(79)90115-5
  28. Lill, R., Cunningham, K., Brundage, L. A., Ito, K., Oliver, D. and Wickner, W. (1989) SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. EMBO J. 8, 961-966
  29. Manting, E. H. and Driessen, A. J. M. (2000) Escherichia coli translocase: the unraveling of a molecular machine. Mol. Microbiol. 37, 226-238 https://doi.org/10.1046/j.1365-2958.2000.01980.x
  30. Miller, A., Wang, L. and Kendall, D. A. (1998) Synthetic signal peptides specifically recognize SecA and stimulate ATPase activity in the absence of preprotein. J. Biol. Chem. 273, 11409-11412 https://doi.org/10.1074/jbc.273.19.11409
  31. Mitchell, C. and Oliver, D. (1993) Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase. Mol. Microbiol. 10, 483-497 https://doi.org/10.1111/j.1365-2958.1993.tb00921.x
  32. Morjana, N. A., McKeone, B. J. and Gilbert, H. F. (1993) Guanidine hydrochloride stabilization of a partially unfolded intermediate during the reversible denaturation of protein disulfide isomerase. Proc. Natl. Acad. Sci. USA 90, 2107-2111 https://doi.org/10.1073/pnas.90.6.2107
  33. Mori, H. and Ito, K. (2001) The Sec protein-translocation pathway. Trends Microbiol. 9, 494-500 https://doi.org/10.1016/S0966-842X(01)02174-6
  34. Or, E., Navon, A. and Rapoport, T. (2002) Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21, 4470-4479 https://doi.org/10.1093/emboj/cdf471
  35. Shinkai, A., Mei, L. H., Tokuda, H. and Mizushima, S. (1991) The conformation of SecA, as revealed by its protease sensitivity, is altered upon interaction with ATP, presecretory proteins, everted membrane vesicles, and phospholipids. J. Biol. Chem. 266, 5827-5833
  36. Song, T. and Park, C. (1995) Effect of folding on the export of ribose-binding protein studied with the genetically isolated suppressors for the signal sequence mutation. J. Mol. Biol. 253, 304-312 https://doi.org/10.1006/jmbi.1995.0554
  37. Terpetschnig, E., Szmacinski, H., Malak, H. and Lakowicz, J. R. (1995) Metal-ligand complexes as a new class of long-lived fluorophores for protein hydrodynamics. Biophys. J. 68, 342-350 https://doi.org/10.1016/S0006-3495(95)80193-1
  38. Terpetschnig, E., Szmacinski, H. and Lakowicz, J. R. (1995) Fluorescence polarization immunoassay of a high-molecularweight antigen based on a long-lifetime Ru-ligand complex. Anal. Biochem. 227, 140-147 https://doi.org/10.1006/abio.1995.1263
  39. Teschke, C. M., Kim, J., Song, T., Park, S., Park, C. and Randall, L. L. (1991) Mutations that affect the folding of ribose-binding protein selected as suppressors of a defect in export in Escherichia coli. J. Biol. Chem. 266, 11789-11796
  40. Triplett, T. L., Sgrignoli, A. R., Gao, F.-B., Yang, Y.-B., Tai, P. C. and Gierasch, L. M. (2001) Functional signal peptides bind a soluble N-terminal fragment of SecA and inhibit its ATPase activity. J. Biol. Chem. 276, 19648-19655 https://doi.org/10.1074/jbc.M100098200
  41. Ulbrandt, N. D., London, E. and Oliver, D. B. (1992) Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J. Biol. Chem. 267, 15184-15192
  42. van der Does, C., Manting, E. H., Kaufmann, A., Lutz, M. and Driessen, A. J. M. (1998) Interaction between SecA and SecYEG in micellar solution and formation of the membraneinserted state. Biochemistry 37, 201-210 https://doi.org/10.1021/bi972105t
  43. Vaskovsky, V. E., Kostetsky, E. Y. and Vasendin, I. M. (1975) A universal reagent for phospholipid analysis. J. Chromatogr. 114, 129-141 https://doi.org/10.1016/S0021-9673(00)85249-8
  44. Yi, G.-S., Choi, B.-S. and Kim, H. (1994) Structures of wild-type and mutant signal sequences of Escherichia coli ribose binding protein. Biophys. J. 66, 1604-1611 https://doi.org/10.1016/S0006-3495(94)80952-X
  45. Wang, L., Miller, A. and Kendall, D. A. (2000) Signal peptide determinants of SecA binding and stimulation of ATPase activity. J. Biol. Chem. 275, 10154-10159 https://doi.org/10.1074/jbc.275.14.10154
  46. Woodbury, R. L., Hardy, S. J. and Randall, L. L. (2002) Complex behavior in solution of homodimeric SecA. Protein Sci. 11, 875-882 https://doi.org/10.1110/ps.4090102
  47. Zheng, N. and Gierasch, L. M. (1997) Domain interactions in E. coli SRP: stabilization of M domain by RNA is required for effective signal sequence modulation of NG domain. Mol. Cell 1, 79-87 https://doi.org/10.1016/S1097-2765(00)80009-X

Cited by

  1. Traffic Jam at the Bacterial Sec Translocase: Targeting the SecA Nanomotor by Small-Molecule Inhibitors vol.18, pp.6, 2011, https://doi.org/10.1016/j.chembiol.2011.04.007
  2. Defining the Solution State Dimer Structure ofEscherichia coliSecA Using Förster Resonance Energy Transfer vol.52, pp.14, 2013, https://doi.org/10.1021/bi301217t
  3. Quaternary Dynamics of the SecA Motor Drive Translocase Catalysis vol.52, pp.5, 2013, https://doi.org/10.1016/j.molcel.2013.10.036
  4. The prediction of novel multiple lipid-binding regions in protein translocation motor proteins: A possible general feature vol.16, pp.1, 2011, https://doi.org/10.2478/s11658-010-0036-y