DOI QR코드

DOI QR Code

Solubilization of Proteins from Human Lymph Node Tissue and Two-Dimensional Gel Storage

  • Received : 2005.08.09
  • Accepted : 2005.10.13
  • Published : 2006.03.31

Abstract

In the present study, we compared six different solubilization buffers and optimized two-dimensional electrophoresis (2-DE) conditions for human lymph node proteins. In addition, we developed a simple protocol for 2-D gel storage. Efficient solubilization was obtained with lysis buffers containing (a) 8M urea, 4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 40 mM Tris base, 65 mM DTT(dithiothreitol) and 0.2% carrier ampholytes; (b) 5M urea, 2M thiourea, 2% CHAPS, 2% SB 3-10 (N-decyl-N, N-dimethyl-3-ammonio-1-propanesulfonate), 40mM Tris base, 65 mM DTT and 0.2% carrier ampholytes or (c) 7M urea, 2M thiourea, 4% CHAPS, 65 mM DTT and 0.2% carrier ampholytes. The optimal protocol for isoelectric focusing (IEF) was accumulated voltage of 16,500 Vh and 0.6% DTT in the rehydration solution. In the experiments conducted for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), best results were obtained with a doubled concentration (50 mM Tris, 384 mM glycine, 0.2% SDS) of the SDS electrophoresis buffer in the cathodic reservoir as compared to the concentration in the anodic reservoir (25 mM Tris, 192 mM glycine, 0.1% SDS). Among the five protocols tested for gel storing, success was attained when the gels were stored in plastic bags with 50% glycerol. This is the first report describing the successful solubilization and 2D-electrophoresis of proteins from human lymph node tissue and a 2-D gel storage protocol for easy gel handling before mass spectrometry (MS) analysis.

Keywords

References

  1. Berkelman, T. and Stenstedt, T. (2002) 2-D Electrophoresis using immobilized pH gradients. Principles and Methods. Amersham Biosciences, Uppsala, Sweden
  2. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Carboni, L., Piubelli, C., Righetti, P. G., Jansson, B. and Domenici, E. (2002) Proteomic analysis of rat brain tissue: Comparison of protocols for two-dimensional gel electrophoresis analysis based on different solubilizing agents. Electrophoresis 23, 4132-4141 https://doi.org/10.1002/elps.200290031
  4. Castellanos-Serra, L. and Paz-Lago, D. (2002) Inhibition of unwanted proteolysis during sample preparation: Evaluation of its efficiency in challenge experiments. Electrophoresis 23, 1745-1753 https://doi.org/10.1002/1522-2683(200206)23:11<1745::AID-ELPS1745>3.0.CO;2-A
  5. Garfin, D. E. (2003) Two-dimensional gel electrophoresis: an overview. Trends Analyt. Chem. 22, 263-272 https://doi.org/10.1016/S0165-9936(03)00506-5
  6. Giavalisco, P., Nordhoff, E., Lehrach, H., Gobom, J. and Klose, J. (2003) Extraction of proteins from plant tissues for twodimensional electrophoresis analysis. Electrophoresis 24, 207- 216 https://doi.org/10.1002/elps.200390016
  7. Görg, A. and Weiss, W. (1999) Analytical IPG-Dalt. Methods Mol. Biol. 112, 189-195
  8. Görg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. and Weiss, W. (2000) The current state of twodimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037-1053 https://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V
  9. Herbert, B. (1999) Advances in protein solubilisation for twodimensional electrophoresis. Electrophoresis 20, 660-663 https://doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<660::AID-ELPS660>3.0.CO;2-Q
  10. Herbert, B. R., Molloy, M. P., Gooley, A. A., Walsh, B. J., Bryson, W. G. and Williams, K. L. (1998) Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19, 845-851 https://doi.org/10.1002/elps.1150190540
  11. Hoving, S., Gerrits, B., Voshol, H., Muler, D., Roberts, R. C. and Oostrum, J. (2002) Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2, 127-134 https://doi.org/10.1002/1615-9861(200202)2:2<127::AID-PROT127>3.0.CO;2-Y
  12. Méchin, V., Consoli, L., Guilloux, M. L. and Damerval, C. (2003) An efficient solubilization buffer for plant proteins focused in immobilized pH gradients. Proteomics 3, 1299-1302 https://doi.org/10.1002/pmic.200300450
  13. Molloy, M. P. (2000) Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal. Biochem. 280, 1-10 https://doi.org/10.1006/abio.2000.4514
  14. Molloy, M. P., Herbert, B. R., Walsh, B. J., Tyler, M. I., Traini, M., Sanchez, J., Hochstrasser, D. F., Williams, K. L. and Gooley, A. A. (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19, 837-844 https://doi.org/10.1002/elps.1150190539
  15. Musante, L., Candiano, G. and Ghiggeri, G. M. (1998) Resolution of fibronectin and other uncharacterized proteins by twodimensional polyacrilamide electrophoresis with thiourea. J. Chromatogr. B. Biomed. Sci. Appl. 705, 351-356 https://doi.org/10.1016/S0378-4347(97)00545-8
  16. Pasquali, C., Fialka, I. and Huber, L.A. (1997) Preparative twodimensional gel electrophoresis of membrane proteins. Electrophoresis 18, 2573-2581 https://doi.org/10.1002/elps.1150181413
  17. Rabilloud, T. (1996) Solubilization of proteins for electrophoretic analysis. Electrophoresis 17, 813-829 https://doi.org/10.1002/elps.1150170503
  18. Rabilloud, T. (1998) Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis 19, 758-760 https://doi.org/10.1002/elps.1150190526
  19. Rabilloud, T., Adessi, C., Giraudel, A. and Lunardi, J. (1997) Improvement of the solubilization of proteins in twodimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307-316 https://doi.org/10.1002/elps.1150180303
  20. Shaw, M. M. and Riederer, B. M. (2003) Sample preparation for two-dimensional gel electrophoresis. Proteomics 3, 1408-1417 https://doi.org/10.1002/pmic.200300471
  21. Stanley, B. A., Neverova, I., Brown, H. A. and Van Eyk, J. E. (2003) Optimizing protein solubility for two-dimensional gel electrophoresis analysis of human myocardium. Proteomics 3, 815-820 https://doi.org/10.1002/pmic.200300388
  22. Tachibana, M., Ohkura, Y., Kobayashi, Y., Sakamoto, H., Tanaka, Y., Watanabe, J., Amikura, K., Nishimura, Y., Akagi, K. (2003) Expression of apolipoprotein A1 in colonic adenocarcinoma. Anticancer Res. 23, 4161-4167
  23. Taylor, C. M. and Pfeiffer, S. E. (2003) Enhanced resolution of glycosylphosphatidylinositol-anchored and transmembrane proteins from the lipid-rich myelin membrane by twodimensional gel electrophoresis. Proteomics 3, 1303-1312 https://doi.org/10.1002/pmic.200300451
  24. Werner, W. E. (2003) Run parameters affecting protein patterns from second dimension electrophoresis gels. Anal. Biochem. 317, 280-283 https://doi.org/10.1016/S0003-2697(03)00171-4
  25. Zuobi-Hasona, K., Crowley, P. J., Hasona, A., Bleiweis, A. S., Brady, L. J. (2005) Solubilization of cellular membrane proteins from Streptococcus mutans for two-dimensional gel electrophoresis. Electrophoresis 26, 1200-1205 https://doi.org/10.1002/elps.200410349

Cited by

  1. Analysis of active components of rhinoceros, water buffalo and yak horns using two-dimensional electrophoresis and ethnopharmacological evaluation vol.34, pp.3, 2011, https://doi.org/10.1002/jssc.201000617
  2. Constitution and quantity of lysis buffer alters outcome of reverse phase protein microarrays vol.7, pp.22, 2007, https://doi.org/10.1002/pmic.200700484
  3. Improvement of plant protein solubilization and 2-DE gel resolution through optimization of the concentration of Tris in the solubilization buffer vol.29, pp.6, 2010, https://doi.org/10.1007/s10059-010-0076-1
  4. Proteômica: metodologias e aplicações no estudo de doenças humanas vol.58, pp.3, 2012, https://doi.org/10.1590/S0104-42302012000300019
  5. Top-down proteomics: Enhancing 2D gel electrophoresis from tissue processing to high-sensitivity protein detection vol.14, pp.7-8, 2014, https://doi.org/10.1002/pmic.201300424
  6. Proteomics: methodologies and applications to the study of human diseases vol.58, pp.3, 2012, https://doi.org/10.1016/S0104-4230(12)70209-9
  7. Proteomics: methodologies and applications to the study of human diseases vol.58, pp.3, 2012, https://doi.org/10.1016/S2255-4823(12)70209-6
  8. Protein Precipitation Method for Salivary Proteins and Rehydration Buffer for Two-Dimensional Electrophoresis vol.7, pp.4, 2008, https://doi.org/10.3923/biotech.2008.686.693
  9. Genomics and proteomics approaches to the study of cancer-stroma interactions vol.3, pp.1, 2010, https://doi.org/10.1186/1755-8794-3-14