DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of a Novel Stem-specific Gene from Camptotheca acuminata

  • Pi, Yan (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Liao, Zhihua (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Chai, Yourong (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Zeng, Hainian (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Wang, Peng (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Gong, Yifu (Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiaotong University) ;
  • Pang, Yongzhen (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Sun, Xiaofen (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University) ;
  • Tang, Kexuan (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University)
  • Received : 2005.09.12
  • Accepted : 2005.10.30
  • Published : 2006.01.31

Abstract

In higher plants, P450s participate in the biosynthesis of many important secondary metabolites. Here we reported for the first time the isolation of a new cytochrome P450 cDNA that expressed in a stem-specific manner from Camptotheca acuminata (designated as CaSS), a native medicinal plant species in China, using RACE-PCR. The full-length cDNA of CaSS was 1735 bp long containing a 1530 bp open reading frame (ORF) encoding a polypeptide of 509 amino acids. Bioinformatic analysis revealed that CASS contained a heme-binding domain PFGXGRRXCX and showed homology to other plant cytochrome P450 monooxygenases and hydroxylases. Southern blotting analysis revealed that there was only one copy of the CaSS present in the genome of Camptotheca acuminata. Northern blotting analysis revealed that CaSS expressed, in a tissue-specific manner, highly in stem and lowly in root, leaf and flower. Our study suggests that CaSS is likely to be involved in the phenylpropanoid pathway.

Keywords

References

  1. Allona, I., Quinn, M., Shoop, E., Swope, K., Cyr, S. S., Carlis, J., Riedle, J., Retzel, E., Campbell, M. M., Sederoff, R. and Whetten, R. W. (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl. Acad. Sci. USA 95, 9693-9698. https://doi.org/10.1073/pnas.95.16.9693
  2. Anterola A. M., Jeon J., Davin L. B. and Lewis N. G. (2002) Transcriptional Control of Monolignol Biosynthesis in Pinus taeda. J. Biol. Chem. 277, 18272-18280. https://doi.org/10.1074/jbc.M112051200
  3. Baucher, M., Monties, B., Montagu, M. V. and Boerjean, W. (1998) Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 17, 125- 197. https://doi.org/10.1016/S0735-2689(98)00360-8
  4. Boudet, A. M. (2000) Lignins and lignification: selected issues. Plant Physiol. Biochem. 38, 1-16. https://doi.org/10.1016/S0981-9428(00)00172-8
  5. Combet, C., Blanchet, C., Geourjon, C. and Deleage, G. (2000) Network protein sequence analysis. Trends Biochem. Sci. 25, 147-150. https://doi.org/10.1016/S0968-0004(99)01540-6
  6. Croteau, R., Kutchan, T. M. and Lewis, N. G. (2000) Natural products (secondary metabolites; in Biochemistry and Molecular Biology of Plants, Buchanan, B., Jones, R., and Gruissem, W. (eds), pp. 1250-1318, American Society of Plant Physiologists, Rockville, USA.
  7. David, R. G., Till, B., Pascaline, U., Daniéle, W. and Eran, P. (2002) Diffrential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol. 130, 1536-1544. https://doi.org/10.1104/pp.007146
  8. Franke, R., Humphreys, J. M., Hemm, M. R., Denault, J. W., Ruegger, M. O., Cusumano, J. C. and Chapple, C. (2002a) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J. 30, 33-45. https://doi.org/10.1046/j.1365-313X.2002.01266.x
  9. Franke, R., Hemm, M. R., Denault, J. W., Ruegger, M. O., Humphreys, J. M. and Chapple, C. (2002b) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J. 30, 47-59. https://doi.org/10.1046/j.1365-313X.2002.01267.x
  10. Goffner, D., Campbell, M. M., Campargue, C., Clastre, M., Borderies, G., Boudet, A. and Boudet, A. M. (1994) Purification and characterization of cinnamoyl-coenzyme A: NADP oxidoreductases in Eucalyptus gunnii. Plant Physiol. 106, 625-632. https://doi.org/10.1104/pp.106.2.625
  11. Gowri, G., Bugos, R. C., Campbell, W. H., Maxwell, C. A. and Dixon, R. A. (1991) Stress responses in alfalfa (Medicago atativa L.): X. Molecular cloning and expression of SAdenosyl- L-Methionine: caffeic acid 3-o-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiol. 97, 7-14. https://doi.org/10.1104/pp.97.1.7
  12. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723. https://doi.org/10.1002/elps.1150181505
  13. Jaakola, L., Pirttila, A. M., Halonen, M. and Hohtola, A. (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol. 19, 201-203. https://doi.org/10.1385/MB:19:2:201
  14. Lewis, N. G., Davin, L. B. and Sarkanen, S. (1999) The nature and function of lignins; in Comprehensive Natural Products Chemistry, Barton, D.H.R., Nakanishi, K and Meth-Cohn, O. (eds), pp. 617-745, Elsevier Science Publishers B.V. Amsterdam, The Netherlands.
  15. Matsunoa, M., Nagatsua, A., Ogiharaa, Y., Ellisb, B. E. and Mizukamia, H. (2002) CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4P-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis. FEBS Lett. 514, 219-224. https://doi.org/10.1016/S0014-5793(02)02368-2
  16. Rechards, E. J. (1995) Preparation and analysis of DNA; in Short Protocol in Molecular Biology, Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (eds.), pp. 36-38, John Wiley and Sons, New York, USA.
  17. Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P. and Werck-Reichhart, D. (2001) CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276, 36566-36574. https://doi.org/10.1074/jbc.M104047200
  18. Seidman, C. E., Struhl, K. and Sheen, J. (1995) Eschericia coli, plasmids, and bacteriophages; in Short Protocols in Molecular Biology, Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (eds.), pp. 22-24, John Wiley and Sons, New York, USA.
  19. Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Teeri, T. T., Boerjan, W., Gustafsson, P., Uhlen, M., Sundberg, B. and Lundeberg, J. (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95, 13330-13335. https://doi.org/10.1073/pnas.95.22.13330
  20. Yamada, T., Kambara, Y., Imaishi, H. and Ohkawa, H. (2000) Molecular cloning of novel cytochrome P450 specials induced by chemical treatments in cultured tobacco cells. Pesticide Biochem. Physiol. 68, 11-25. https://doi.org/10.1006/pest.2000.2496

Cited by

  1. Molecular cloning and expression profiling of the first specific jasmonate biosynthetic pathway gene allene oxide synthase from Lonicera japonica vol.36, pp.3, 2009, https://doi.org/10.1007/s11033-007-9205-0
  2. Molecular cloning and expression profile of a jasmonate biosynthetic pathway gene for allene oxide cyclase from Hyoscyamus niger vol.42, pp.3, 2008, https://doi.org/10.1134/S0026893308030059
  3. cDNA cloning and functional characterisation of CYP98A14 and NADPH:cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis vol.69, pp.3, 2009, https://doi.org/10.1007/s11103-008-9420-7
  4. Allene Oxide Cyclase from Camptotheca acuminata Improves Tolerance Against Low Temperature and Salt Stress in Tobacco and Bacteria vol.41, pp.2, 2009, https://doi.org/10.1007/s12033-008-9106-z
  5. Cytochromes P450 in phenolic metabolism vol.5, pp.2-3, 2006, https://doi.org/10.1007/s11101-006-9025-1
  6. Molecular cloning, characterization, and expression analysis of lignin biosynthesis genes from kenaf (Hibiscus cannabinus L.) vol.38, pp.1, 2016, https://doi.org/10.1007/s13258-015-0341-y
  7. Screening of Genes Which are Able to Affect Kalanchoe Vegetative Reproduction vol.21, pp.6, 2011, https://doi.org/10.5352/JLS.2011.21.6.865