The Nonlinear Analysis and Modeling of the ER Fluid Damper Using Higher Order Spectrum

고차 주파수 스펙트럼을 이용한 ER 유체 댐퍼의 비선형 특성 해석 및 모델링 연구

  • 김동현 (국방과학연구소) ;
  • 정태휘 (창원대학교 제어계측공학과 대학원) ;
  • 조중선 (창원대학교 제어계측공학과)
  • Published : 2006.01.01

Abstract

The nonlinear damping force model is made to identify the properties of the ER (electro-rheological) fluid suspension damper. The instrumentation is carried out to measure the damping force of the ER damper. The higher order spectral analysis method is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. The distinctive higher order nonlinear characteristics are observed. The nonlinear damping force model, which has the higher order velocity terms, is proposed with the result of higher order spectrum analysis. The higher order terms coefficients, which vary according to the strength of the electric field, are calculated using the least square method.

Keywords

References

  1. Bonnecaze, R. T. and Brady, J. F., 'Yield Stresses in ElectroRheological Fluid,' J. of Rheol. Vol.36, No.1, pp.73-115, January, 1992 https://doi.org/10.1122/1.550343
  2. Stanway, R., Sproston, J. and Firoozian, R., 'Identification of the Damping Law of an Electro-Reological Fluid,' ASME J. of Dynamic Systems, Measurement and Control, Vol. 111, pp. 91-96, March, 1989 https://doi.org/10.1115/1.3153023
  3. Mui, G., Russel, D. L. and Wong, J. Y., 'Non-linear Parameter Identification of an Electro- Rheological Fluid Damper,' Proceedings of the 5th International Conference on E-R Fluids, Sheffield, U.K., pp. 690-697,10-14 July, 1995
  4. Gamota, D. R. and Filisko, F. E., 'Dynamic Mechanical Studies of Electrorheological Materials : Moderate Frequencies,' J. of Rheol. Vol.35, No.3, pp. 399-425, April 1991 https://doi.org/10.1122/1.550221
  5. Shulman, Z. P., Khusid, B. M., Korobko, E. V. and Khizhinsky, E. P., 'Damping of Mechanical Systems Oscillations by a Non-Newtonian Fluid with Electric-Field Dependent Parameters,' Journal of Non-Newtonian Fluid Mechanics, Vol.25, pp. 329-346, 1987 https://doi.org/10.1016/0377-0257(87)85033-4
  6. Nikias, C. L. and Raghuveer, M. R., 'Bispectrum Estimation,' Proceedings of IEEE, Vol.75, No.7, pp. 869-891, July, 1987 https://doi.org/10.1109/PROC.1987.13824
  7. Nikias, C. L. and Mendel, J. M., 'Signal Processing with High Order Spectra,' IEEE Signal Processing Magazine, pp. 10-37, July, 1993 https://doi.org/10.1109/79.221324
  8. Kim, K. I. and Powers, E. J., 'A Digital Method of Modeling Quadratically Nonlinear Systems with a General Random Input, IEEE Transaction on Acoustics, Speech and Signal Processing,' Vol. 36, No. 11, pp. 1758-1769, November, 1988 https://doi.org/10.1109/29.9013
  9. Nam, S. W. and Powers, E. J., 'Application of High Order Spectral Analysis to Cubically Nonlinear System Identification, IEEE Transaction on Signal Processing,' Vol. 42, No. 7, pp. 1746-1765, July, 1994 https://doi.org/10.1109/78.298282
  10. Fackrell, J. W. A. , White, P. R., Hammond, J. K. and Pinnington, R. J., 'The Interpretation of the Bispectra of Vibration Signal I. Theory,' Mechanical Systems and Signal Processing, Vol.9, No.3, pp. 257-266, 1995 https://doi.org/10.1006/mssp.1995.0021
  11. Fackrell, J. W. A., White, P. R., Hammond, J. K. and Pinnington, R. J., 'The Interpretation of the Bispectra of Vibration Signal II. Experimental Results and Applications,' Mechanical Systems and Signal Processing, Vol.9, No.3, pp. 267-274, 1995 https://doi.org/10.1006/mssp.1994.0022
  12. Collis, W. B., White, P. R. and Hammond, J. C., 'High Order Spectra: Bispectrum and Trispectrum,' Mechanical Systems and Signal Processing, Vol.12, No.3, pp. 375-394, 1998 https://doi.org/10.1006/mssp.1997.0145