Two Stage Fermentation of Xylose/Glucose Mixture for xylitol Production by Candida mogii

Candida mogii에 의한 Xylitol 생산시 Xylose/Glucose 혼합배지의 2단계 발효

  • Baek, Seoung-Chul (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Kwon, Yun-Joong (Department of Food Science and Biotechnology, Kyonggi University)
  • 백승철 (경기대학교 식품생물공학과) ;
  • 권윤중 (경기대학교 식품생물공학과)
  • Published : 2006.12.30

Abstract

Two stage fermentations of glucose/xylose mixture which is similar composition with rice straw hemicellulose hydrolysate were performed by Candida mogii ATCC 18364. In first stage, glucose was consumed rapidly for cell growth in aerobic condition (2 vvm, 300 rpm), then D-xylose was used for xylitol production in semi-aerobic condition (1 vvm, 300 rpm). After 4 days of fermentation, about $24\;g/{\ell}$ xylitol was produced with a yield of 0.58 g/g and volumetric productivity of $0.25\;g/{\ell}{\cdot}h$. To improve the xylitol yield by reduction of xylose consumption for cell growth and maintenance, D-glucose was continuously supplemented during the second stage of fermentation. By D-glucose feeding of $6.8\;g/{\ell}{\cdot}$ day, xylitol was produced up to $29\;g/{\ell}$ with a yield of 0.8 g/g and volumetric productivity $0.30\;g/{\ell}{\cdot}h$ which are 1.2-1.3 times higher than those obtained without D-glucose feeding.

볏짚 가수분해물의 조성과 유사한 xylose/glucose 혼합배지를 이용하여 Candida mogii ATCC 18364에 의한 xylitol 생산성 및 수율에 관한 연구를 수행하였다. 통기량을 생육단계 (약 10시간)는 호기적인 2 vvm, 300 rpm에서, 생산단계는 반호기적 조건인 1 vvm, 300 rpm으로 조절한 결과 균체의 농도가 10시간 만에 약 $4.7\;g/{\ell}$까지 증가하여 농축균을 사용한 것과 같은 효과를 얻을 수 있었으며, 4일 후에 $0.58\;g/{\ell}$의 수율과 $0.25\;g/{\ell}{\cdot}h$의 생산성으로 약 $24\;g/{\ell}$의 자일리톨이 생산되어 농축균을 이용한 것보다 약간 더 우수하였다. 또한 생산단계에서 xylose를 이용한 세포의 성장을 감소시키기 위해 생산단계에서 포도당을 $6.8\;g/{\ell}{\cdot}day$로 공급한 결과 4일 후에 0.8 g/g의 수율과 $0.31\;g/{\ell}{\cdot}h$의 생산성으로 약 $29.4\;g/{\ell}$의 자일리톨을 생산하여, 포도당 공급을 하지 않았을 때보다 약 $20{\sim}30%$의 증가를 보여주었다.

Keywords

References

  1. Pepper, T. and P. M. Olonger (1998), Xylitol in sugar-free confections, Food Technol. 10, 98-106
  2. Ylikhri, R (1979), Metabolic and nutritional aspect of xylitol, Adv. Food Res. 25, 159-180
  3. Pfeifer, M. J., S. S. Silva, M. G. A. Felipe, I. C. Roberto, and I. M. Mancilha (1996), Effect of culture condition on xylitol production by Candida guilliermondii FTI 20037, Appl. Biochem. Biotechnol. 57/58, 423-430 https://doi.org/10.1007/BF02941722
  4. Parajo, J. C, H. Dominguez, and J. M. Dominguez (1998), Biotechnological production of xylitol. Part 2: Operation in culture media with commercial sugars, Biores. Technol. 65, 203-212 https://doi.org/10.1016/S0960-8524(98)00036-4
  5. Rodrigues, D. C G. A, S. S. Silva, and M. Vitolo (2002), Influence of pH on the xylose reductase activity of Candida guilliermondii during fed-batch xylitol bioproduction, J. Basic Microbiol. 42(3), 201-206 https://doi.org/10.1002/1521-4028(200206)42:3<201::AID-JOBM201>3.0.CO;2-#
  6. Mayerhoff, Z. D. V. L., I. C. Roberto, and S. S. Silva (1997), Xylitol production from rice straw hemicellulose hydrolysate using different yeast strains, Biotechnol. Lett. 19, 407-409 https://doi.org/10.1023/A:1018375506584
  7. Parajo, J. C, H. Dominguez, and J. M. Dominguez (1998), Biotechnological production of xylitol. part 3: operation in culture media made from lignocellulose hydrolysates. Bioresour. Technol. 66, 25-40 https://doi.org/10.1016/S0960-8524(98)00037-6
  8. Tran, L. H., M. Yogo, H. Ojima, O. Idota, K. Kawai, T. Suzuki, and K. Takamizawa (2004), The production of xylitol by enzymatic hydrolysis of agricultural wastes, Biotechnol. Bioprocess Eng. 9, 223-228 https://doi.org/10.1007/BF02942297
  9. Roberto, I. C. C., S. S. Silva, M. G. A. Felipe, I. M. D. Mancilha, and S. Sato (1996), Bioconversion of rice straw hemicellulose hydrolyzate for the production of xylitol, Appl. Biochem. Biotechnol. 57/58, 339-347 https://doi.org/10.1007/BF02941712
  10. Tavares, J. M., L. C. Duarte, M. T. Amaral-Collaco, and F. M. Girio (2000), The influence of hexoses addition on the fermentation of D-xylose in Debaryomyces hansenii under continuous cultivation, Enz. Microb. Technol. 26, 743-747 https://doi.org/10.1016/S0141-0229(00)00166-6
  11. Du Preez, J. C. (1994), Process parameters and environmental factors affecting D-xylose fermentation by yeasts, Enz. Microb. Technol. 16, 944-956 https://doi.org/10.1016/0141-0229(94)90003-5
  12. Kastner, J. R, W. J. Jones, and R. S. Roberto (1998), Simultaneous utilization of glucose and D-xylose by Candida shehatae in a chemostat, J. Ind. Microbial. Biotechnol. 20, 339-343 https://doi.org/10.1038/sj.jim.2900536
  13. Yahashi, Y., H. Horitsu, K. Kawai, T. Suzuki, and K. Takamizawa (1996), Production of xylitol from D-xylose by Candida tropicalis : the effect of D-glucose feeding, J. Ferment. Bioeng. 81, 148-152 https://doi.org/10.1016/0922-338X(96)87593-3
  14. Kastner, J. R., M. A Eiteman, and S. A. Lee (2001), Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations, Biotecnol. Lett. 23, 1663-1667 https://doi.org/10.1023/A:1012435413933
  15. Kim, J. H., Y. W. Ryu, and J. H. Seo (1999), Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis, J. Ind. Microbiol. Biotechnol. 22, 181-186 https://doi.org/10.1038/sj.jim.2900626
  16. Baek, S. C and Y. J. Kwon (2004), Xylitol production from D-xylose by Candida mogii ATCC 18364, Korea J. Biotechnol. Bioeng. 19, 226-230
  17. Oh, D. and S. Kim (1996), Effect of xylose and glucose on xylitol production by Candida parapsilosis, Korean J. Food Sci. Technol. 28, 1151-1156