전기자극 하에서 알콜 산화효소의 안정화연구; 당, 히드로젤, 계면활성제 효과

Stabilization of Alcohol Oxidase under Electrostimulation; Sugars, Hydrogels and Surfactants Effect

  • 김범수 (전북대학교 자연과학대학 분자생물학과) ;
  • 이강민 (전북대학교 자연과학대학 분자생물학과) ;
  • ;
  • 김경숙 (전북대학교 자연과학대학 분자생물학과)
  • Kim, Beom-Su (Department of Molecular Biology, College of Natural Science, Chonbuk University) ;
  • Lee, Kang-Min (Department of Molecular Biology, College of Natural Science, Chonbuk University) ;
  • Biellmann, J.F. (Institute of Chemistry, Louis Pasteur University) ;
  • Kim, Kyung-Suk (Department of Molecular Biology, College of Natural Science, Chonbuk University)
  • 발행 : 2006.12.30

초록

효소는 환경과 조건에 따라 상이한 활성도를 나타내며, 전기 자극에 의하여 비활성화된 알콜 산화효소는 당, 계면활성제, 히드로젤 들에 의하여 안정화되었다. 이들 효소는 trehalose, TritonX-100, Brij에서 보다 안정하였으며, 이들 효소의 안정도는 Hansenula sp., P. pastoris, C. boidinii에서 분리된 효소가 순서적으로 보다 안정하였다. 전기자극하에서 효소의 안정화에 대한 이 연구는 생물공학, 단백질공학, 의료공학 분야에 널리 이용될 수 있으리라 사료된다.

We investigated the activity and stability of alcohol oxidase from Hansenula sp., Pichia pastoris, and Candida boidinii under the electric stimulation. The activity and stability of alcohol oxidase depended on electric output voltage, electric stimulation time. This inactivation of the enzyme under electric stimulation could be recovered by stabilizing additives such as sugars, surfactants and hydrogels. These alcohol oxidase was more stable in trehalose, Triton X-100, Brji solution and alcohol oxidase from Hansenula is more stable than that from P. pastoris, and C. boidinii. The stabilizing of enzymes against electric stimulation showed a great potential use of enzymes in biotechnology and medical engineering fields.

키워드

참고문헌

  1. Beg, H. (1995), Possibilities and problems of low frequency weak electromagnetic fields in cell biology, Bioelectrochem. Bioenerg. 38, 153-159 https://doi.org/10.1016/0302-4598(95)01831-X
  2. Gamaley, I., K. Augsten, and H. Berg (1995), Electrostjmulation of macrophage NADPH oxidase by modulated high-frequency electromagnetic fields, Bioelectrochem. Bioenerg. 38, 415-418 https://doi.org/10.1016/0302-4598(95)01836-4
  3. Stalulions, R. (1999), Electric pulse-induced precipitation of biological macromolecules in electroporation, Bioelectrochem. Bioenerg. 48, 249-254 https://doi.org/10.1016/S0302-4598(98)00206-2
  4. Azevedo A., J. Cabral, D. Prazeres, T. Gibson, and L. Fonseca (2004), Tennal and operational of Hansenula polymorpha alcohl oxidase, J. Mol. Cat. B; Ezymatic. 27, 37-45 https://doi.org/10.1016/j.molcatb.2003.09.001
  5. Patel. N., S. Meier, K. Cammann, and G. Chemnitius (2001), Screen-printed biosensors using different alcohol oxidase, Sensors and Acutuators B. 75, 101-110 https://doi.org/10.1016/S0925-4005(01)00545-7
  6. Burfeind, J., B. Weigel, G. Kretzmer, K. Schugerl, A. Huwig, and F. Giffhorn (1996), Detennination of the concentration of higher alcohols with enzyme coupled flow-injection analysis in model system, Anal Chim. Acta. 322, 131-139 https://doi.org/10.1016/0003-2670(95)00610-9
  7. Liden, H., T. Buttler, H. Jeppsson, and G. Marko-verga (1998), Rapid alcohol detennination in plasma and urine by column liquid chromatography with biosemsor detection, J. Pharm. Biomed. Anal. 17, 1111-1128 https://doi.org/10.1016/S0731-7085(98)00077-6
  8. Davidson, P. and W. Q. Sun (2001), Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage, Pharmaceutical Research 18, 474-479 https://doi.org/10.1023/A:1011002326825
  9. Gomez, L., H. Ramirez, and R. Villalonga (2000), Stabilization of invertase by modification of sugar chains with chitosan, Biotechnology Letters 22, 347-351 https://doi.org/10.1023/A:1005664432575
  10. Draber, P., E. Draberova, and M. Novakova (1995), Stability of monoclonal IgM antibodies freezed in the presence of trehalose, J. lmmunolog. Methods 181, 1-7 https://doi.org/10.1016/0022-1759(95)00017-5
  11. DePaz, R. A., D. A. Dal, C. Barnett, J. F. Carpenter, A. Gaertner, and T. Randolph (2002), Effects of drying methods and additives on the structure, function, and storage stability of subtilisin: role of protein confonnation and molecular mobility, Enz. Microb. Technol. 31, 765-774 https://doi.org/10.1016/S0141-0229(02)00173-4
  12. Jean-Pierre Samama, K. M. Lee, and Biellmann Jean-Francois (1987), Enzymes and microemulsion: activity and properties of liver alcohol dehydrogenase in ionic water-in-oil microemulsion, European J. Biochem. 163, 609-620 https://doi.org/10.1111/j.1432-1033.1987.tb10910.x
  13. Lee, K. M. and Biellmann Jean-Francois (1987), Enzyme and organic solvent: horse liver alcohol dehydrogenase in nonionic microemulsion: stability and activity, FEBS Lett. 224, 33 https://doi.org/10.1016/0014-5793(87)80417-9
  14. Markvicheva, E. A., N. E. Tkachuk, S. V. Kuptsova, T. N. Dugina, S. M. Strukova, Y. E. Kirsh, V. P. Zubov, and L. D. Rumsh (1996), Stabilization of proteases by entrapment in a new composite hydrogel, Appl. Biochem. Biotech. 61, 75-84 https://doi.org/10.1007/BF02785690
  15. Basri, M., S. Samsudin, M. Bin Ahmad, C. Razak, and A. B. Salleh (1999), Lipase immobilized on poly (VP-co-HEMA) hydrogel for esterification reaction, Appl. Biochem. and Biotech. 81, 205 https://doi.org/10.1385/ABAB:81:3:205
  16. Lee, J. H., S. J. Lee, and Jekal (1999) Effects of Electrical stimulation on the Mast Cell of Skin in Rat, J. Kor. Phys. Ther. 11, 81-87
  17. Choi, Y. J., K, H. Ko, and U. T. Oh (1993), Effect of electrical stimulation of the caudal ventrolateral Medulla on the Activity of Dorsal Horn Neurons of the Spinal Cord in the Ca, J. Appl. Pharmacal. 1, 37-43
  18. Brown, M. and P. P. Gogia (1987), Electrical Stimulation effects on Cutaneous Wound Healing in Rabbit, Phys. Ther. 68, 955-960