각막 간질 대체물로 콘드로이틴 설페이트가 결합된 콜라젠 스폰지의 생체 적합성 평가

The Evaluation of Biocompatigbility of Collagen/Chondroitin Sulfate Sponge as a Scaffold for Corneal Stromal Layer

  • 장인근 (동국대학교 생명화학공학과) ;
  • 안재일 (동국대학교 생명화학공학과) ;
  • 서영권 (동국대학교 생명화학공학과) ;
  • 김재찬 (중앙대학교 부속 용산병원 안과) ;
  • 송계용 (중앙대학교 의과대학 병리학교실) ;
  • 박정극 (동국대학교 생명화학공학과)
  • Jang, In-Keun (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Ahn, Jae-Il (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Seo, Yeong-Gwon (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Kim, Jae-Chan (Department of Ophthalmology, Chung-Ang University Hospital) ;
  • Song, Kye-Yong (Department of Pathology, College of Medicine, Chung-Ang University) ;
  • Park, Jung-Keug (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 발행 : 2006.12.30

초록

조직공학에서 생체재료의 생체적합성과 조직재생능력은 생체재료가 생체에 적합한지를 판단하는 가장 중요한 요소이다. 콜라젠은 인체조직을 이루는 주된 단백질이고, GAGs은 조직의 미세환경을 결정짓는 주요한 요소로 알려져 있다. 본 연구에서는 1형 콜라젠 스폰지를 탈수 열처리 (A군)하고 EDC로 가교결합한 것 (B군)과 CS를 첨가하여 EDC로 가교결합한 군 (C군)의 스폰지 형태의 콜라젠 지지체을 제조하였다. 제작된 콜라젠 스폰지를 3 mm의 디스크 형태로 토끼 각막의 실질부위에 주머니형태로 이식하였다. 8주 동안 각막의 신생혈관 생성, 혼탁, 지지체의 투명도 정도를 확인하고, 2주, 4주, 8주 후에 적출하여 염증과 각막 섬유모세포의 이동을 확인하였다. 모든 군에서 염증, 신생혈관 생성, 혼탁은 일어나지 않았다. 그러나 CS가 첨가된 콜라젠 스폰지에 섬유모세포의 이동이 많았고, 이식물의 투명도가 증가하였다. 1형 콜라젠 스폰지는 각막 간질에의 생체적합성이 뛰어나 각막 간질로의 대체 가능성이 크고, CS가 첨가된 1형 콜라젠 스폰지는 조직공학적 생인공각막의 재구성에 큰 도움을 줄 것으로 기대된다.

Biocompatibility and tissue regenerating capacity are essential characteristics in the design of collagenous biomaterials for tissue engineering. Attachment of glycosaminoglycans to collagen may add to these characteristics by creating an appropriate micro-environment. In this study, porous type I collagen matrices were crosslinked using dehydrothermal treatment and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide, in the presence and absence of chondroitin sulfate (CS). The scaffold like discs in 3 mm diameter were inserted into the intralamellar stromal pockets of rabbit cornea. In 8 weeks of follow up, clinical evaluation including corneal neovascularization, opacity and transparency of the graft scaffold was performed, and the inflammatory reaction and migration of corneal fibroblast were evaluated histologically. No inflammation, neovascularization and opacity in any of the implant were observed. CS increased the corneal fibroblast invasion and the transparency. It is concluded that the type I collagen sponge showed a biocompatibility in corneal stromal layer and addition of CS slightly improved the quality of the bioartificial corneal stromal layer. These results could be useful for the development of corneal substitutes.

키워드

참고문헌

  1. Minami, Y., H. Sugihara, and S. Oono (1993), Reconstruction of corneal in three-dimensional collagen gel matrix culture, Invest. Ophthalmol. Vis. Sci. 34, 2316-2324
  2. Daniels, J. T., J. K. G. Dart, S. J. Tuft, and P. T. Khaw (2001), Corneal stem cells in review, Wound Rep. Reg. 9, 483-494 https://doi.org/10.1046/j.1524-475x.2001.00483.x
  3. Trinkaus-Randall, V. (2000), Principle of Tissue Engineering, 2nd ed., p471-91. Academic Press, San Diego, CA
  4. Griffith, M., M. Hakim, S. Shimmura, M. A. Watsky, F. Li, D. Carlsson, C. J. Doillon, M. Nakamura, E. SUUfonen, N. Shinozaki, K. Nakata, and H. Sheardown (2002), Artificial human cornea, Cornea, 21(suppl. 2), S54-S61 https://doi.org/10.1097/01.ico.0000263120.68768.f8
  5. Langer, R. and J. P. Vacanti (1993), Tissue engineering, Science 260, 920-926 https://doi.org/10.1126/science.8493529
  6. Pachence, J. M. (1996), Collagen-based devices for soft tissue repair, J. Biomed Mater. Res. 33, 35-40 https://doi.org/10.1002/(SICI)1097-4636(199621)33:1<35::AID-JBM6>3.0.CO;2-N
  7. Lie, M., G. Changyou, M. Zhengwei, Z. Jie, and S. Jiacong (2004), Enhanced biological stability of collagen porous scaffold by using amino acids as novel cross-linking bridges, Biomaterials 25, 2997-3004 https://doi.org/10.1016/j.biomaterials.2003.09.092
  8. Human, H., D. Bezuidenhout, M. Torrianui, M. Hendriks, and P. Zilla (2002), Optimization of diamine bridges in glutaraldehyde treated bioprosthetic aortic wall tissue, Biomaterials 23, 2099-2103 https://doi.org/10.1016/S0142-9612(01)00302-7
  9. Jackson, R. I., S. J. Busch, and A. D. Cardin (1991), Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes, Physiol. Rev. 71, 481-539 https://doi.org/10.1152/physrev.1991.71.2.481
  10. Witt, D. P. and A. D. Lander (1994), Differential binding of chemokines to glycosarninoglycan subpopulations, Curr. BioI. 4, 394-400 https://doi.org/10.1016/S0960-9822(00)00088-9
  11. Weber, I. T., R. W. Harrison, and R. V. Iozzo (1996), Model structure of decorin and implications for collagen fibrillogenesis, J. BioI. Chem. 271, 31767-31770 https://doi.org/10.1074/jbc.271.50.31767
  12. Andresen, L., L. Thomas, H. Henrik, J. Kaj, and E. Niels (2000), The influence of corneal stromal matrix proteins on the migration of human corneal fibroblasts, Exp. Eye. Res. 71, 33-43 https://doi.org/10.1006/exer.2000.0850
  13. Pieper, J. S., A. Oosterhof, P. J. Dijkstra, J. H. Veerkamp, and T. H. van Kuppevelt (1999), Preparation and characterization of porous cresslinked collagenous matrices containing bioavailable chondroitin sulphate, Biomaterials 20, 847-858 https://doi.org/10.1016/S0142-9612(98)00240-3
  14. Chen, C. S., I. V. Yannas, and M. Spector (1995), Pore strain behavior of collagen glycosaminoglycan analogues of extracellular matrix, Biomaterials 16, 777-783 https://doi.org/10.1016/0142-9612(95)99640-8
  15. Orwin, E. J., M. L. Borene, and A. Hubel (2003), Biomechanical and optical characteristics of a corneal stromal equivalent, J. Biomech Eng. 125, 439-444 https://doi.org/10.1115/1.1589773