References
- Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722-736 https://doi.org/10.1021/es00162a001
- Quinton, G. E., R. J. Buchanan, D. E. Ellis, Jr., and S. H. Shoemaker (1997) A method to compare groundwater cleanup technologies. Remediation 8: 7-16
- Humayra, A. S., Y. Hasegawa, I. Nomura, Y. C. Chang, T. Sato, and K. Takamizawa (2005) Evaluation of different culture conditions of Clostridium bifermentans DPH-1 for cost effective PCE degradation. Biotechnol. Bioprocess Eng. 10: 40-46 https://doi.org/10.1007/BF02931181
- Scholz-Muramatsu, H., A. Neumann, M. Messmer, E. Moore, and G. Diekert (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163: 48-56 https://doi.org/10.1007/BF00262203
- Gerritse, J., V. Renard, T. M. Pedro Gomes, P. A. Lawson, M. D. Collins, and J. C. Gottschal (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165: 132-140 https://doi.org/10.1007/s002030050308
- Holliger, C., D. Hahn, H. Harmsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss, and A. J. B. Zehnder (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169: 313-321 https://doi.org/10.1007/s002030050577
- Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng. 89: 489-491 https://doi.org/10.1016/S1389-1723(00)89102-1
- Suyama, A., R. Iwakiri, K. Kai, T. Tokunaga, N. Sera, and K. Furukawa (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci. Biotechnol. Biochem. 65: 1474-1481 https://doi.org/10.1271/bbb.65.1474
- He, J., K. M. Ritalahti, K. L. Yang, S. S. Koenigsberg, and F. E. Loffler (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424: 62-65 https://doi.org/10.1038/nature01717
- Maymo-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane. Science 276: 1568-1571 https://doi.org/10.1126/science.276.5318.1568
- Muller, J. A., B. M. Rosner, G. Von Abendroth, G. Meshulam- Simon, P. L. McCarty, and A. M. Spormann (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl. Environ. Microbiol. 70: 4880- 4888 https://doi.org/10.1128/AEM.70.8.4880-4888.2004
- Sung, Y., K. M. Ritalahti, R. P. Apkarian, and F. E. Loffler (2006) Quantitative PCR confirms purity of Strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl. Environ. Microbiol. 72: 1980-1987 https://doi.org/10.1128/AEM.72.3.1980-1987.2006
- Ottow, J. C. (1968) Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron-reduction in Aerobacter aerogenes. Z. Allg. Mikrobiol. 8: 441-443 https://doi.org/10.1002/jobm.3630080512
- Zeikus, J. G. (1977) The biology of methanogenic bacteria. Bacteriol. Rev. 41: 514-541
- Pfenning, N., F. Widdel, and H. G. Truper (1992) The dissimilatory sulfate-reducing bacteria. pp. 926-940. In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.). The Prokaryotes. 2nd ed., Vol. 1. Springer- Verlag, New York, NY, USA
- Hobbie, J. E., R. J. Daley, and S. Jasper (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228
- Bromfield, S. M. (1954) The reduction of iron oxide by bacteria. J. Soil Sci. 5: 129-139 https://doi.org/10.1111/j.1365-2389.1954.tb02181.x
- Bergmann, J. G. and J. Sanik (1957) Determination of trace amounts of chlorine in naphtha. Anal. Chem. 29: 241-243 https://doi.org/10.1021/ac60122a018
- Bradley, P. M. and F. H. Chapelle (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Environ. Sci. Technol. 30: 2084-2086 https://doi.org/10.1021/es950926k
- Bradley, P. M. and F. H. Chapelle (1998) Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4: 81-87 https://doi.org/10.1006/anae.1998.0150
- Bradley, P. M., F. H. Chapelle, and D. R. Lovley (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64: 3102-3105
- Bradley, P. M. and F. H. Chapelle (1997) Kinetics of DCE and VC mineralization under methanogenic and Fe(III)- reducing conditions. Environ. Sci. Technol. 31: 2692-2696 https://doi.org/10.1021/es970110e
- Van Hylckama Vlieg, J. E. T., W. de Koning, and D. B. Janssen (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62: 3304-3312
- Hashimoto, A., K. Iwasaki, N. Nakasugi, M. Nakajima, and O. Yagi (2002) Degradation pathways of trichloroethylene and 1,1,1-trichloroethane by Mycobacterium sp. TA27. Biosci. Biotechnol. Biochem. 66: 385-390 https://doi.org/10.1271/bbb.66.385
- Verschueren, K. (1983) Handbook of Environmental Data on Organic Materials. 2nd ed., Van Nostrand Reinhold Co., New York, NY, USA
- Hata, J., N. Miyata, E. S. Kim, K. Takamizawa, and K. Iwahori (2004) Anaerobic degradation of cis-1,2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. J. Biosci. Bioeng. 97: 196-201