Characterization of a Newly Isolated cis-1,2-Dichloroethylene and Aliphatic Compound-Degrading Bacterium, Clostridium sp. Strain KYT-1

  • Kim, Eun-Sook (United Graduate School of Agricultural Science, Gifu University) ;
  • Nomura, lzumi (Faculty of Applied Biological Sciences, Gifu University) ;
  • Hasegawa, Yuki (Faculty of Applied Biological Sciences, Gifu University) ;
  • Takamizawa, Kazuhiro (United Graduate School of Agricultural Science, Gifu University,Faculty of Applied Biological Sciences, Gifu University)
  • Published : 2006.12.31

Abstract

A cis-1,2-dichloroethylene (cis-DCE)-degrading anaerobic bacterium, Clostridium sp. strain KYT-1, was isolated from a sediment sample collected from a landfill site in Nanji-do, Seoul, Korea. The KYT-1 strain is a gram-positive, endospore-forming, motile, rod-shaped anaerobic bacterium, of approximately $2.5{\sim}3.0\;{\mu}m$ in length. The degradation of cis-DCE is closely related with the growth of the KYT-1 strain, and it was stopped when the growth of the KYT-1 strain became constant. Although the pathway of cis-DCE degradation by strain KYT-1 remains to be further elucidated, no accumulation of the harmful intermediate, vinyl chloride (VC), was observed during anaerobic cis-DCE degradation. Strain KYT-1 proved able to degrade a variety of volatile organic compounds, including VC, isomers of DCE (1,1-dichloroethylene, trans-1,2-dichloroethylene, and cis-DCE), trichloroethylene, tetrachloroethylene, 1,2-dichloroethane, 1,1,1-trichloroethane, and 1,1,2-trichloroethane. Strain KYT-1 degraded cis-DCE at a range of temperatures from $15\;to\;37^{\circ}C$, with an optimum at $30^{\circ}C$, and at a pH range of 5.5 to 8.5, with an optimum at 7.0.

Keywords

References

  1. Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722-736 https://doi.org/10.1021/es00162a001
  2. Quinton, G. E., R. J. Buchanan, D. E. Ellis, Jr., and S. H. Shoemaker (1997) A method to compare groundwater cleanup technologies. Remediation 8: 7-16
  3. Humayra, A. S., Y. Hasegawa, I. Nomura, Y. C. Chang, T. Sato, and K. Takamizawa (2005) Evaluation of different culture conditions of Clostridium bifermentans DPH-1 for cost effective PCE degradation. Biotechnol. Bioprocess Eng. 10: 40-46 https://doi.org/10.1007/BF02931181
  4. Scholz-Muramatsu, H., A. Neumann, M. Messmer, E. Moore, and G. Diekert (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163: 48-56 https://doi.org/10.1007/BF00262203
  5. Gerritse, J., V. Renard, T. M. Pedro Gomes, P. A. Lawson, M. D. Collins, and J. C. Gottschal (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165: 132-140 https://doi.org/10.1007/s002030050308
  6. Holliger, C., D. Hahn, H. Harmsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss, and A. J. B. Zehnder (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169: 313-321 https://doi.org/10.1007/s002030050577
  7. Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng. 89: 489-491 https://doi.org/10.1016/S1389-1723(00)89102-1
  8. Suyama, A., R. Iwakiri, K. Kai, T. Tokunaga, N. Sera, and K. Furukawa (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci. Biotechnol. Biochem. 65: 1474-1481 https://doi.org/10.1271/bbb.65.1474
  9. He, J., K. M. Ritalahti, K. L. Yang, S. S. Koenigsberg, and F. E. Loffler (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424: 62-65 https://doi.org/10.1038/nature01717
  10. Maymo-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane. Science 276: 1568-1571 https://doi.org/10.1126/science.276.5318.1568
  11. Muller, J. A., B. M. Rosner, G. Von Abendroth, G. Meshulam- Simon, P. L. McCarty, and A. M. Spormann (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution. Appl. Environ. Microbiol. 70: 4880- 4888 https://doi.org/10.1128/AEM.70.8.4880-4888.2004
  12. Sung, Y., K. M. Ritalahti, R. P. Apkarian, and F. E. Loffler (2006) Quantitative PCR confirms purity of Strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl. Environ. Microbiol. 72: 1980-1987 https://doi.org/10.1128/AEM.72.3.1980-1987.2006
  13. Ottow, J. C. (1968) Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron-reduction in Aerobacter aerogenes. Z. Allg. Mikrobiol. 8: 441-443 https://doi.org/10.1002/jobm.3630080512
  14. Zeikus, J. G. (1977) The biology of methanogenic bacteria. Bacteriol. Rev. 41: 514-541
  15. Pfenning, N., F. Widdel, and H. G. Truper (1992) The dissimilatory sulfate-reducing bacteria. pp. 926-940. In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.). The Prokaryotes. 2nd ed., Vol. 1. Springer- Verlag, New York, NY, USA
  16. Hobbie, J. E., R. J. Daley, and S. Jasper (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228
  17. Bromfield, S. M. (1954) The reduction of iron oxide by bacteria. J. Soil Sci. 5: 129-139 https://doi.org/10.1111/j.1365-2389.1954.tb02181.x
  18. Bergmann, J. G. and J. Sanik (1957) Determination of trace amounts of chlorine in naphtha. Anal. Chem. 29: 241-243 https://doi.org/10.1021/ac60122a018
  19. Bradley, P. M. and F. H. Chapelle (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Environ. Sci. Technol. 30: 2084-2086 https://doi.org/10.1021/es950926k
  20. Bradley, P. M. and F. H. Chapelle (1998) Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4: 81-87 https://doi.org/10.1006/anae.1998.0150
  21. Bradley, P. M., F. H. Chapelle, and D. R. Lovley (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64: 3102-3105
  22. Bradley, P. M. and F. H. Chapelle (1997) Kinetics of DCE and VC mineralization under methanogenic and Fe(III)- reducing conditions. Environ. Sci. Technol. 31: 2692-2696 https://doi.org/10.1021/es970110e
  23. Van Hylckama Vlieg, J. E. T., W. de Koning, and D. B. Janssen (1996) Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62: 3304-3312
  24. Hashimoto, A., K. Iwasaki, N. Nakasugi, M. Nakajima, and O. Yagi (2002) Degradation pathways of trichloroethylene and 1,1,1-trichloroethane by Mycobacterium sp. TA27. Biosci. Biotechnol. Biochem. 66: 385-390 https://doi.org/10.1271/bbb.66.385
  25. Verschueren, K. (1983) Handbook of Environmental Data on Organic Materials. 2nd ed., Van Nostrand Reinhold Co., New York, NY, USA
  26. Hata, J., N. Miyata, E. S. Kim, K. Takamizawa, and K. Iwahori (2004) Anaerobic degradation of cis-1,2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1 isolated from landfill leachate sediment. J. Biosci. Bioeng. 97: 196-201