DOI QR코드

DOI QR Code

Highly Stable RF Transfer over a Fiber Network by Fiber-induced Phase Noise Cancellation

위상잡음 제거에 의한 광섬유망에서의 높은 안정도의 RF 전송

  • Lee, Won-Kyu (Length/Time Metrology Group, Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Yee, Dae-Su (Length/Time Metrology Group, Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Kim, Young-Beom (Length/Time Metrology Group, Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Kwon, Taeg-Yong (Length/Time Metrology Group, Division of Physical Metrology, Korea Research Institute of Standards and Science)
  • 이원규 (한국표준과학연구원 기반표준부 길이/시간그룹) ;
  • 이대수 (한국표준과학연구원 기반표준부 길이/시간그룹) ;
  • 김영범 (한국표준과학연구원 기반표준부 길이/시간그룹) ;
  • 권택용 (한국표준과학연구원 기반표준부 길이/시간그룹)
  • Published : 2006.12.25

Abstract

We have transferred highly stable 100 MHz RF through a 23 km fiber network. The fiber-induced phase noise due to the vibration and the temperature fluctuation in the optical path is detected and is compensated by configuring a noise-canceling servo. The transfer instability was $6{\times}10^{14}$ at 1 s of averaging time and $2{\times}10^{-17}$ at 10000 s of averaging time. The single sideband phase noise was greatly reduced by more than 20 dB below the Fourier frequency of 1 kHz. The transferred RF has nearly the same stability as the original reference frequency.

높은 안정도를 가지는 100 MHz의 RF 신호를 23 km의 광섬유망을 통하여 전송하였다. 진동과 온도 변화에 의하여 생기는 광섬유 전송과정에서의 위상 잡음을 측정하고 이를 보상하는 회로를 구성하였다. 광섬유 잡음이 제거되었을 때, RF 신호 전송의 상대주파수 불안정도는 1초 평균시간에서 $6{\times}10^{14}$, 10000초 평균시간에서 $2{\times}10^{-17}$으로서 기준 RF 신호의 안정도와 거의 같은 수준으로 광섬유를 통하여 RF를 전송할 수 있었다. 잡음 보상에 의하여 단측파대 위상잡음은 푸리에 주파수 1 kHz 이하에서 20 dB 이상 감소하였다.

Keywords

References

  1. K. Sato, T. Hara, M. Fujishita, S. Kuji, S. Tsuruta, Y. Tamura, T. Sasao, K. Sato, and S. Manabe, 'Application of phase-stabilized optical fiber in transmission of reference and IF signals in VLBI observation', IEEE Trans. Instr. Meas., vol. 41, no. 3, pp. 385-389, 1992 https://doi.org/10.1109/19.153334
  2. K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishiro, and N. Kawano, 'Development of an ultrastable fiber optic frequency distribution system using an optical delay control module', IEEE Trans. Instr. Meas., vol. 19, no. 1, pp. 19-24, 2000
  3. R. T. Logan Jr. and G. F. Lutes, 'High stability microwave fiber optic systems: demonstrations and applications', in 1992 IEEE Frequency Control Symposium, pp. 310-316, 1992
  4. P. A. Krug, M. I. Large, and R. G. Davison, 'Optical fiber technique for remote stabilization of RF phase', Optical Fiber Technology, vol. 5, pp. 175-184, 1999 https://doi.org/10.1006/ofte.1998.0291
  5. M. Calhoun, R. Sydnor, and W. Diener, 'A stabilized 100-megahertz and 1-gigahertz reference frequency distribution for Cassini radio science', IPN Progress Report 42-148, pp. 1-11, 2002
  6. J. Frisch, D. G. Brown, and E. L. Cisneros, 'The RF phase distribution and timing system for the NLC', in XX International Linac Conference, Monterey, California, pp. 745-747, 2000
  7. J. Frisch, D. Bernstein, D. Brown, and E. Cisneros, 'A high stability, low noise RF distribution system', in Proceedings of the IEEE Particle Accelerator Conference, vol. 2, pp. 816-818, 2002
  8. L. Holberg, C. W. Oates, E. A. Curtis, E. N. Ivanov, S. A. Diddams, T. Udem, H. G. Robinson, J. C. Bergquist, R. J. Rafac, W. M. Itano, R. E. Drullinger, and D. J. Wineland, 'Optical frequency standards and measurements', IEEE J. Quantum Electron., vol. 37, no. 12, pp. 1502-1513, 2001 https://doi.org/10.1109/3.970895
  9. J. Ye, J. L. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquist, L. W. Hollberg, L. Robertsson, and L.-S. Ma, 'Delivery of high-stability optical and microwave frequency standards over an optical fiber network', J. Opt. Soc. Am. B, vol. 20, pp. 1459-1467, 2003 https://doi.org/10.1364/JOSAB.20.001459
  10. C. Daussy, O. Lopes, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, 'Long-distance frequency dissemination with a resolution of $10^{-17}$', Phys. Rev. Lett., vol. 94, pp. 203904-1-4, 2005 https://doi.org/10.1103/PhysRevLett.94.203904
  11. F. Narbonneau, M. Lours, S. Bize, A. Clairon, G. Santarelli, O. Lopez, C. Daussy, A. Amy-Klein, and C. Chardonnet, 'High resolution frequency standard dissemination via optical fiber metropolitan network', Rev. Sci. Instr., vol. 77, pp. 064701-1-8, 2006 https://doi.org/10.1063/1.2205155
  12. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, C. Chardonnet, 'Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard', Appl. Phys. B, vol. 78, pp. 25-30, 2004 https://doi.org/10.1007/s00340-003-1335-z
  13. G. Melts and W. W. Morey, 'Bragg grating formation and germanosilicate fiber photosensitivity', in International Workshop on Photoinduced Self-Organization Effects in Optical Fiber, Proc. SPIE, vol.1516, pp. 185-199, 1991