Acetylcholinesterase-based Biosensor for Detection of Residual Organophosphates and Carbamates Insecticides

유기인계 및 카바메이트계 농약을 측정할 수 있는 바이오 센서의 개발

  • Kim, Young-Mee (Medical School, Cheju National University) ;
  • Kim, Jin-Young (Medical School, Cheju National University) ;
  • Cho, Moon-Jae (Medical School, Cheju National University) ;
  • Chang Kong-Man (Faculty of Horticultural Life Science, Cheju National University) ;
  • Hyun, Hae-Nam (Faculty of Horticultural Life Science, Cheju National University) ;
  • Cho, Somi K. (Faculty of Biotechnology, College of Applied Life Sciences, Cheju National University)
  • 김영미 (제주대학교 의과대학) ;
  • 김진영 (제주대학교 의과대학) ;
  • 조문제 (제주대학교 의과대학) ;
  • 장공만 (제주대학교 생명자원과학대학 생물산업학부) ;
  • 현해남 (제주대학교 생명자원과학대학 생물산업학부) ;
  • 김소미 (제주대학교 생명자원과학대학 생명공학부)
  • Published : 2006.12.31

Abstract

Inhibitors of acetylcholinesterase(AchE), such as organophosphates and carbamates, interfere the action of AchE in nerve and may lead to a severe impairment of nerve functions or even death. Therefore, insect AchE is the biological target of predominant insecticides used in agriculture. Biosensors are sensitive and can be used as dispoisable sensors for environmental control. In recent years, the use of AchEs in biosensor technology has gained enormous attention, in particular with respect to insecticide detection. The principle of biosensors using AchE as a biological recognition element is based on the inhibition the catalytic activity by the agents to be detected. We here present a strip-type biosensor based on AchE inhibition. In this study, acetylcholinesterase and PVA-SbQ(polyvinyl alcohol functionalized with methyl pyridinium methyl sulfate) were co-immobilized on immobilone-P membranes. Immobilization of the enzymes showed a stability in 6 months without activity loss in $4^{\circ}C$ storage. Enzymes immobilized on surfaces of membrane responded to organophosphates and carbamate more sensitivitive than enzyme in solution. Organophosphates and carbamates concentrations could be detected by entrapped and surface immobilized enzymes, in 5 min. For chlorpyrifos, carbofuran, cabaryl, and methidathion, the detection limits of AChE-strip were similar to that of HPLC/GC method.

유기인계나 카바메이트 살충제는 신경전달계 효소인 Acetylcholinesterase(AchE)를 저해하므로 농산물중에서 농약의 잔류여부 확인이 가능하다. 이러한 바이오센서는 환경 관리를 위한 민감한 센서로 사용될 수 있으며, 최근에는 AchE를 이용한 잔류농약을 측정할 수 있는 바이오센서 기술이 주목을 받고 있다. 우리는 최근에 감광성고분자물질인 고정화물질을 이용하여 광기교화반응에 의해 AchE를 막에 고정화시켜 잔류농약을 측정할 수 있는 바이오센서를 개발하였다. 고정화시킨 효소는 $4^{\circ}C$에서 6개월 동안 안정하였으며, 유기인계와 카바메이트계의 농약에 대한 반응에서도 기존의 용액형태의 효소보다 민감한 반응을 보였다. 또한 본 연구개발로 제작된 바이오센서에 의한 잔류농약 측정법은 용액형태의 효소에 의한 잔류농약 측정법보다 신속 간편하여 5분 안에 잔류농약에 대한 효소의 억제율을 측정할 수 있었으며, chlorpyrifos, cabaryl, carbofuran methidathion에 대해 농약의 검출 능력이 정밀분석법에 의한 검출한계에 근접한 것으로 나타났다

Keywords

References

  1. Clark, L, C. and Lyons, C.(1962) Electrode systems for conditinuous monitoring in cardiovescular surgety. Ann. N.Y. Acad. Sci. 102, 29 https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
  2. Updike, S. J. and Hicks, G. P. (1967) The enzyme electrode. Nature 214, 986 https://doi.org/10.1038/214986a0
  3. Kuhr, R. J. and Dorough, H. W. (1977) Carbamate insecticides; Chemistry, Biochemistry, and Toxiology. CRC Press. Cleveland, OH. 41-142
  4. Kim, J. H. and Kim, Y. H. (1998) Inhibition of Acetylcholinesterase Activity on the Organophosphorus and Carbamate Pesticides. J. Kor. Env. 7, 52-56
  5. Ivanov, A., Evtugyn, G., Budnikov, H., Ricci, F., Moscone, D. and Palleschi, G. (2003) Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides. Anal. Bioanal. Chem. 377, 624-631 https://doi.org/10.1007/s00216-003-2174-9
  6. Schulze, H., Scherbaum, E., Anastassiades, M., Vorlova, S., Schmid, R. D. and Bachmann, T. T. (2002) Development, validation, and application of an acetylcholinesterase-biosensor test for the direct detection of insecticide residues in infant food. Biosens. Bioelectron. 17, 1095-1105 https://doi.org/10.1016/S0956-5663(02)00104-5
  7. Durand, P. David, A. and Thomas, D. (1978) An enzyme electrode for acetylcholine. Biochim. Biophys. Acta 10, 277- 281
  8. Yamani, H., Tran-Minh, C., Abdul, A. and Chavanne, D. (1988) Automated system for pesticide detection. Sensor. Act. 15, 193-198 https://doi.org/10.1016/0250-6874(88)87008-2
  9. Rogers, K. R., Cao, C. J., Valdes, J. J., Eldefrawi, A. T. and Eldefrawi, M. E. (1991) Acetylcholinesterase fiber-optic biosensor for detection of anticholinesterases. Fundam. Appl. Toxicol. 16, 810-820 https://doi.org/10.1016/0272-0590(91)90166-2
  10. Andreescu, S., Avramescu, A., Bala, C., Magearu, V. and Marty, J. L. (2002) Detection of organophosphorus insecticides with immobilized acetylcholinesterase-comparative study of two enzyme sensors. Anal Bioanal Chem. 374, 39-45 https://doi.org/10.1007/s00216-002-1442-4
  11. Fournier, D., Mutero, A., Pralavorio, M. and Bride, J. M. (1993) Drosophila acetylcholinesterase: mechanisms of resistance to organophosphates. Chem. Biol. Interact. 87, 233-238 https://doi.org/10.1016/0009-2797(93)90047-3
  12. Boublik, Y., Saint-Aguet, P., Lougarre, A., Arnaud, M., Villatte, F., Estrada-Mondaca, S. and Fournier, D. (2002) Acetylcholinesterase engineering for detection of insecticide residues. Protein Eng. 15, 43-50 https://doi.org/10.1093/protein/15.1.43
  13. Lee, S. P., Han, Y. S. and Kim, B. C. (1996) Structure-Property Relationship of PVA-SbQ Water Soluble Photosyntive Polymer and its Application to Screening Process of Color Monitor. J. Korean Ind. Eng. Chem. 7, 379-386
  14. Bachmann, T. T., Leca, B., Vilatte, F., Marty, J. L., Fournier, D. and Schmid, R. D. (2000) Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosen. Bioelectron. 15, 193-201 https://doi.org/10.1016/S0956-5663(00)00055-5
  15. Choi, J.W., Kim, Y.K., Lee, I. H., Min, J. and Lee, W. H. (2001) Optical organo phosphorus biosensor consisting of acetylcholinesterase/viologen hetero Langmuir-Blodgett film. Biosen.. Bioelectron. 16, 937-943 https://doi.org/10.1016/S0956-5663(01)00213-5
  16. Doretti, L., Ferrara, D., Lora, S., Schiavon, F., and Veronese, F. M.(2000) Acetylcholine biosensor involving entrapment of acetylcholinesterase and poly(ethylene glycol)-modified choline oxidase in a poly(vinyl alcohol) cryogel membrane. Enzyme. Microbial. Technol. 27, 279-285 https://doi.org/10.1016/S0141-0229(00)00210-6
  17. Xavier, M, .P., Vallejo, B., Marazuela, M. D., Moreno-Bondi, M. C., Baldini, F. and Falai, A. (2000) Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red. Biosen. Bioelectron. 14, 895-905 https://doi.org/10.1016/S0956-5663(99)00066-4
  18. Ellman, G. L., Courtney. K. D., Andres, V. Jr. and Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95 https://doi.org/10.1016/0006-2952(61)90145-9
  19. Silvana, A., Lise, B. and Jean, L. M. (2002) Immobilization of acetylcholin esterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal. Chim. Acta 464, 171-180 https://doi.org/10.1016/S0003-2670(02)00518-4
  20. Karnovsky, M. J. and Roots, L. (1964) A “direct-coloring” Thiocholine method for cholinesterases. J. Hibtochem. Cytochem. 12, 219-221 https://doi.org/10.1177/12.3.219
  21. Sotiropoulou S., Fournier, D. and Chaniotakis, NA. (2004) Genetically engineered acetylcholinesterase-based biosensor for attomolar detection of dichlorvos. Biosen. Bioelectron. 20, 2347-2352 https://doi.org/10.1016/j.bios.2004.08.026
  22. Schnitzerling, H. J.,Nolan, J. and Davey , P. A. (1982) A comparative study of the reactivity of acetylcholinesterases of the cattle tick Boophilus microplus and cattle erythrocytes with organophosphorus and carbamate inhibitors. Pestic. Biochem. Physiol. 18, 216-225 https://doi.org/10.1016/0048-3575(82)90108-0