빛과 카드뮴이 벼 catalase 활성과 동위효소 발현에 미치는 영향

Effect of Light and Cadmium on the Activity and Isozyme Pattern of Catalase from Ric(Oryza sativa L.)

  • 김윤경 (순천향대학교 유전공학과) ;
  • 이미영 (순천향대학교 유전공학과)
  • Kim, Yoon-Kyoung (Department of Genetic Engineering, Soonchunhyang University) ;
  • Lee, Mi-Young (Department of Genetic Engineering, Soonchunhyang University)
  • 발행 : 2006.12.31

초록

명조건과 암조건에서 카드뮴이 벼 유묘 뿌리와 줄기의 카탈라제 총 활성과 동위효소 발현에 미치는 영향을 조사하였다. 카드뮴을 처리하면 명조건과 암조건의 뿌리와 줄기에서 과산화수소 함량이 현저하게 증가하였다. 뿌리의 카탈라제 동위효소는 잎과는 서로 다른 조직 특이적 발현양상을 보여주었다. 또한 카드뮴을 처리하게 되면 명조건 뿌리는 암조건 뿌리와 카탈라제 동위효소의 발현 패턴에 차이를 보였다. 1 mM 카드뮴 처리에 의하여 명조건 뿌리의 카탈라제 총 활성은 약 16배 증가하였는데 이러한 활성증가는 동위효소 CAT1l과 CAT2의 증가에 의한 것이었다. 반면 암조건 뿌리의 카탈라제는 0.1mM 카드뮴에 의하여 약 3배 증가하였느나, 0.5와 1mM카드뮴에 의하여 오히려 효소활성이 감소하였다. 0.1mM카드뮴에 의한 효소활성 증가는 CAT1, CAT3, CAT4 동위효소의 활성 증가에 기인하였으나 카드뮴 농도를 더 높였을때 CAT2와 CAT4가 감소하였다. 대조군 잎에는 양극 동위효소인 CATc, 중성 동위효소인 CATn와 음극 동위효소인 CAT1가 존재하였다. 잎에서는 명조건과 암조건 모두에서 카드뮴을 처리하여도 카탈라제 활성과 동위효소 발현에 차이가 없었다. 이러한 결과들은 카드뮴에 의한 뿌리 카탈라제 효소의 발현변화는 빛에 의하여 조절되지만 잎 카탈라제의 발현은 빛에 의하여 조절되지 않음을 보여준다.

The effects of cadmium on the catalase activity and isozyme patterns under light and dark conditions of rice(Oryza sativa L. cv. Dongjin) seedlings were examined. Cadmium treatment resulted in the notable enhancement of $H_2O_2$ contents in the seedling roots and leaves under light and dark conditions. The catalase isozyme patterns in the roots were different from those in the leaves, showing tissue-specific expression of the enzyme. Moreover, the expression patterns of catalase isozymes in the green seedling roots were different from those in the etiolated seedling roots following cadmium treatment. The increase of total catalase activity was about 16 times at 1 mM cadmium and marked inductions of the isozyme CAT1 and CAT2 contributed to this increase in the green seedling roots. On the other hand, in the etiolated seedling roots, total catalase activity was lower than that of control at 0.5 and 1 mM cadmium, even though catalase activity increased about 3 times at 0.1 mM cadmium. The 3 fold increase of total catalase activity was mainly due to the increase of CAT1, CAT3 and CAT4 at 0.1 mM cadmium. However, treatment with higher concentrations of cadmium decreased the activity of CAT2 and CAT4 in the etiolated roots. In the leaves, the catalase existed as three isozymes; one cationic isozyme CATc, one neutral isozyme CATn and one anionic isozyme CAT1 in the control. The isozyme patterns and total activities remained unaffected by cadmium under light and dark conditions in the seedling leaves. Taken together, it seems that cadmium-induced changes of catalase might be regulated by light in the roots, but not in the leaves.

키워드

참고문헌

  1. Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S. and Cakmak, I. (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J. Trace Elem Med Biol. 20, 181-189 https://doi.org/10.1016/j.jtemb.2005.12.004
  2. Sasaki, K., Ito, H., Mitsuhara, I., Hiraga, S., Seo, S., Matsui, H. and Ohashi, Y. (2006) A novel wound-responsive cis-element, VWRE, of the vascular system-specific expression of a tobacco peroxidase gene, tpoxN1. Plant Mol Biol. 62, 753-768 https://doi.org/10.1007/s11103-006-9055-5
  3. Zhao, F. Y., Wang, X. Y., Zhao, Y. X. and Zhang, H. (2006) Transferring the Suaeda salsa glutathione S-transferase and catalase genes enhances low temperature stress resistance in transgenic rice seedlings. J. Plant Physiol. Mol Biology. 32, 231-238
  4. Mori, H., Higo, K., Minobe, Y., Matsui, H. and Chiba, S. (1992) Nucleotide and derived amino acid sequence of a catalase cDNA isolated from rice immature seeds. Plant Mol. Biol. 18, 973-976 https://doi.org/10.1007/BF00019211
  5. Morita, S., Tasaka, M., Fujisawa, H., Usimaru, T. and Hideo, T. (1994) A cDNA clone encoding a rice catalase isozyme. Plant Physiol. 105, 1015-1016 https://doi.org/10.1104/pp.105.3.1015
  6. Higo, K. and Higo, H. (1996) Cloning and characterization of the rice CatA catalase gene, a homologue of the maize Cat3 gene. Plant Mol Biol. 30, 505-521 https://doi.org/10.1007/BF00049328
  7. Iwamoto, M., Higo, H. and Higo, K. (2004) Strong expression of the rice catalase gene CatB promoter in protoplasts and roots of both a monocot and dicots. Plant Physiol Biochem. 42, 241-249 https://doi.org/10.1016/j.plaphy.2004.01.008
  8. Iwamoto, M. and Higo, K. (2006) Accumulation of senseantisense transcripts of the rice catalase gene CatB under dark conditions requires signals from shoots. Gene. 377, 186-194 https://doi.org/10.1016/j.gene.2006.04.010
  9. Chen, Z., Iyer, S., Caplan, A., Klessig, D. F. and Fan, B. (1997) Differential accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissues. Plant Physiol. 114, 193-201 https://doi.org/10.1104/pp.114.1.193
  10. Agrawal, G. K., Rakwal, R. and Jwa, N. S. (2001) Stress signaling molecules involved in defense and protein phosphatase 2A inhibitors modulate OsCATC expression in rice (Oryza sativa) seedlings. J. Plant Physiol. 158, 1349-1355 https://doi.org/10.1078/0176-1617-00607
  11. Brune, A., Urbach, W. and Klessig, D. F. (1995) Differential toxicity of heavy metals is partly related to al loss of preferential extraplasmic compartmentation: a comparison of Cd-, Mo-, Ni- and Zn-stress. New Phytol. 129, 404-409
  12. Aidid, S. B. and Okamoto, H. (1992) Effects of lead, cadmium and zinc on the electric membrane potential at the xylem/symplast interface and cell elongation of Impatiens balsamina. Environ. Exp. Bot. 32, 439-448 https://doi.org/10.1016/0098-8472(92)90056-8
  13. Van Assche, F. and Clijsters, H. (1985) Inhibition of photosynthesis by heavy metals. Photosynthesis Research. 7, 31-40 https://doi.org/10.1007/BF00032920
  14. Shaw, B. P. (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biol. Plant. 37, 587-596 https://doi.org/10.1007/BF02908843
  15. Edwards, R. (1996) Characterization of glutathione transferases and glutathione peroxidases in pea (Pisum sativum). Physiol. Plant. 98, 594-604 https://doi.org/10.1111/j.1399-3054.1996.tb05716.x
  16. Mohan, B. S. and Hosetti, B. B. (1997) Potential phytotoxicity of leaf and cadmium to Lemna minor grown in sewage stabilization ponds. Environ. Poll. 98, 233-238 https://doi.org/10.1016/S0269-7491(97)00125-5
  17. Bhattacharjee, S. (1998) Membrane lipid peroxidation, free radical scavengers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biol. Plant. 40, 131-135 https://doi.org/10.1023/A:1000908904819
  18. Rao, M. V., Paliyath, G. and Ormrod, D. P. (1996) Ultraviolet- B- and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110, 125-136 https://doi.org/10.1104/pp.110.1.125
  19. Gabriel, O. (1971) Locating enzymes on gels. Meth. Enzymol. 22, 578-604 https://doi.org/10.1016/0076-6879(71)22042-5
  20. Anderson, M. D., Prasad, T. K. and Stewart, C. R. (1995) Changes in isozyme profile of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109, 1247-1257 https://doi.org/10.1104/pp.109.4.1247
  21. Woodbury, W., Spencer, A. K. and Stahmann, M. A. (1971) An improved procedure using frricyanide for detecting catalase isozymes. Anal. Biochem. 44, 301-305 https://doi.org/10.1016/0003-2697(71)90375-7
  22. Okuda, T., Masuda, Y., Yamanaka, A. and Sagisaka, S. (1991) Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 97, 1265-1267 https://doi.org/10.1104/pp.97.3.1265
  23. Brej, T. (1998) Heavy metal tolerance in Agropyron repens (L.) P. Bauv. Populations from Legnica copper smelter area, Lower Silesia. Acta Societatis Botanicorum Poloniae. 67, 325-333
  24. Gallego, S. M., Benavides, M. P. and Tomaro, M. (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. 121, 151-159 https://doi.org/10.1016/S0168-9452(96)04528-1
  25. Stroinski, A. and Kozlowska, M. (1997) Cadmium-induced oxidative stress in potato tuber. Acta. Societatis Botanicorum Poloniae. 66, 189-195 https://doi.org/10.5586/asbp.1997.024
  26. Schickler, H. and Caspi, H. (1999) Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus. Alyssum. Physiol. Plant. 105, 39-44 https://doi.org/10.1034/j.1399-3054.1999.105107.x