DOI QR코드

DOI QR Code

오차드그래스의 형질전환에 있어서 Acetosyringone과 품종이 미치는 영향

Effect of Acetosyringone and Variety on Transformation of Orchardgrass

  • 이기원 (경상대학교 응용생명과학부 낙농학) ;
  • 이상훈 (경상대학교 응용생명과학부 낙농학) ;
  • 이동기 (경상대학교 응용생명과학부 낙농학) ;
  • 김도현 (경상대학교 응용생명과학부 낙농학) ;
  • 이병현 (경상대학교 응용생명과학부 낙농학)
  • Lee, Ki-Won (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Sang-Hoon (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Dong-Gi (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Do-Hyun (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Byung-Hyun (Division of Applied Life Science, Gyeongsang National University)
  • 발행 : 2006.12.30

초록

유용유전자 도입을 통한 신품종 오차드그래스를 개발할 목적으로 Agrobacterium을 이용한 효율적인 형질전환 체계를 확립하였다. 오차드그래스 성숙종자 유래의 캘러스를 standard binary vector인 pIG121Hm을 가지고 있는 Agrobacterium을 이용하여 감염시킨 후 공동배양하여 형질전환 시켰다. Agrobacterium을 이용한 형질전환에 있어서 중요한 인자로 작용하는 AS 첨가와 오차드그래스 품종에 따른 캘러스의 형질전환 효율의 차이를 GUS 유전자의 발현정도로 조사하였다. 'Roughricer' 품종의 형질전환 효율이 가장 우수하였으며, Agrobacterium 감염시에 접종배지와 공동배양배지에 $200{\mu}M$의 AS를 첨가해 주었을 때 형질전환 효율이 증가하는 것으로 나타났다. 50 mg/L의 hygromycin이 첨가된 선발배지에서 살아남은 캘러스로부터 정상적인 식물체가 재분화 되었으며 이들 형질 전환체에 대한 GUS 염색과 PCR 분석을 실시한 결과 발현벡터의 T-DNA 영역이 형질전환식물체의 genome에 성공적으로 도입되었음을 확인할 수 있었다. 본 연구를 통하여 확립된 효율적인 형질전환시스템은 환경스트레스 내성 신품종 오차드그래스의 개발에 유용하게 이용될 수 있을 것이다.

Effects of acetosyringone and on Agrobacterium-mediated transformation of orchardgrass were investigated. Embryogenic calli induced from 3 varieties, Frontier, Potomac and Roughrider, were infected and co-cultured with Agrobacterium EHA101 carrying standard binary vector pIG121Hm encoding the hygromycin phosphotransferase(HPT), neomycin phosphotransferase II(NPTII) and intron-containing ${\beta}-glucuronidase$ (intron-GUS) genes in the T-DNA region. The effects of varieties and acetosyringone(AS) concentrations on transformation and the expression of the GUS gene were investigated. Inclusion of $200{\mu}M$ AS in inoculation and co-cultivation media lead to a significant increase in stable transformation efficiency. Hygromycin resistant calli were developed into complete plants via somatic embryogenesis. GUS histochemical assay and PCR analysis of transgenic plants demonstrated that transgenes were integrated into the genome of orchardgrass.

키워드

참고문헌

  1. Bajaj, S.Y., J. Ran, G. Phillips, S. Kulrajathevan, D.K. Pal, C. Elborough and S. Puthigae. 2006. A high throughput Agrobacterium tumefaciensmediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Rep. 25:651-659 https://doi.org/10.1007/s00299-005-0099-9
  2. Bettany, J.E., S.J. Dalton, E. Timms, B. Manderyck, M.S. Dhanoa and P. Morris. 2003. Agrobacterium tumefaciens-mediated transformation of Festuca arundin acea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Rep. 21:437-444 https://doi.org/10.1007/s00299-002-0531-3
  3. Chu, C.C., C.S. Wang, C.C. Sun, C. Hsu, K.C. Yin, C.Y. Chu and F. Y. Bi. 1975. Establishment of an efficient medium for anther culture of rice through comp arative experiments on the nitrogen sources. Scienta Sinic. 18:659-668
  4. Dalton, S.J., A.J.E. Bettany, E. Timms and P. Morris. 1999. Co-transformed, diploid Loliumperenne, Lolium multiflorum and Lolium temulentum plants produced by microprojectile bombardment. Plant Cell Rep. 18:721-726 https://doi.org/10.1007/s002990050649
  5. Dong. S. and R. Qu. 2005. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci. 168:1453-1458 https://doi.org/10.1016/j.plantsci.2005.01.008
  6. Hiei, Y., S. Ohta, T. Komariand and T. Kumasiro. 1994. Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  7. Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari, and T. Kumashiro. 1996. High efficiency of transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotech. 14:745-750 https://doi.org/10.1038/nbt0696-745
  8. Jefferson, R.A. 1987. Assay chimeric genes in plant: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387-405 https://doi.org/10.1007/BF02667740
  9. Lee, S.-H., D.-G. Lee, H.-S. Woo and B.-H. Lee. 2004. Development of transgenic tall fescue plants from mature seed-derive callus via Agrobacteriummediated transformation. Asian-Aust J Anim Sci. 17:1390-1394 https://doi.org/10.5713/ajas.2004.1390
  10. Lee, S.-H., D.-G. Lee, H.-S. Woo, K.-W. Lee, D.-H. Kim, S.-S. Kwak, J.-S. Kim, Hyegi. Kim, Nagib Ahsan, M.S. Choi, J.-K. Yang and B.-H. Lee. (2006). Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seedderived callus tissues. Plant Science. 171:408-414 https://doi.org/10.1016/j.plantsci.2006.05.006
  11. McKersie, B.D. 1997. Improving forage production systems using biotechnolgy. In: McKersie, B. D. and Brown, D.C.W. (Eds), Biotechnology in Agriculture Series, No. 17, CAB International, Wallingford, p. 3
  12. Murashige T and F. Skoog 1962. A revise medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  13. Spangenberg, G., Z.Y. Wang and Potrykus. 1998. Biotechnology in forage and turf grass improvement. Frankel etal. Monographsontheoraticalandappliedgenetics. Vol. 23. Springer Verlag. Heidelberg. pp. 192-221
  14. Usami, S.S., Morikawa, I. Takabe and T. Machida. 1987 .Absence in monocotyledonous plant so the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol. Gen. Genet. 209:221-226 https://doi.org/10.1007/BF00329646
  15. Van, S.E and D.A. Sleper. 1996. Orchardgrass. In: Moser, L. E. etal(eds), Cool-season for age grasses. Vol 34. ASA. CSSA. and SSSA. Madison WI. pp. 503-534