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ABSTRACT

In this paper, initial value problem for dynamical astronomy will be established using parabolic
cylindrical coordinates. Computation algorithm is developed for the initial value problem of gravity
perturbed trajectories. Applications of the algorithm for the problem of final state predication are
illustrated by numerical examples of seven test orbits of different eccentricities. The numerical results
are extremely accurate and efficient in predicating final state for gravity perturbed trajectories which is
of extreme importance for scientific researches as well as for military purposes. Moreover, an additional
efficiency of the algorithm is that, for each of the test orbits, the step size used for solving the differential
equations of motion is larger than 70% of the step size used for obtaining its reference final state solution.
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I. INTRODUCTION

The application of the conventional equations of
space dynamic for the motion of Earth’s artificial satel-
lites gives inaccurate prediction for their positions and
velocities. This is because that these equations are un-
stable in the Liapunow sense (Stiefel & Scheifele 1971)
In brief, the deficiency of these equations is due to the
choice of the variables, which in turn has led some au-
thors to propose successful methods to change of the
dependent and/or independent variables so as to regu-
larize the differential equations of motion. Of these is,
the method established by Stiefel and Scheifele, in 1971.
This method consists of changing the independent vari-
able from time to a new variable, which is proportional
to the eccentric anomaly in the elliptic case or its equiv-
alent in hyperbolic case. The method is then changes
the coordinates from three-dimensional Cartesian space
to a four -dimensional space by what they called the
KS transformation. The resulting equations are four-
dimensional harmonic oscillator. Applications of this
transformation to problem in space dynamics showed
its very great accuracy even for complex systems (e.g.,
Sharaf et al. 1987). In the present paper, initial value
problem for dynamical astronomy will be established
using parabolic cylindrical coordinates ,in which the
independent variables are only, changed which in turn
produce transformations from three dimensional space
to another three dimensional space. Computation al-
gorithm is developed for the initial value problem of
gravity perturbed trajectories. Applications of the al-
gorithm for the problem of final state predication are
illustrated by numerical examples of seven test orbits
of different eccentricities. The numerical results are ex-
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tremely accurate and efficient in predicating final state
for gravity perturbed trajectories which is of extreme
importance for scientific researches as well as for mili-
tary purposes. Moreover, an additional efficiency of the
algorithm is that, for each of the test orbits, the step
size of the independent variable (time) used for solving
the differential equations of motion is larger than 70%
of the time step size used for obtaining its reference
final state solution .

II. MOTION IN PARABOLIC CYLINDRI-
CAL COORDINATES

(a) Direct transformations

The transformations between Cartesian coordinates
(x,y, z) and parabolic cylindrical coordinates (uy, ug, u3)
are given as (e.g., Margenau & Murphy 1966):

T = E(uf—ug), Y = ujuz; z = us, (1)

—oco<u <00, 0<uy <00, —o0o<ug<oo

Differentiating eq. (1) with respect to the time t, we
get

T = urln — Ugle] U = Uy + Utte; 2 = Ug (2)

where the ‘dot’ is used to denote the differentiation
with respect to the time .

(b) Inverse transformations

The first two of eq. (1) could be written as:

1 )
(z + iy)1/2 = E(ul +iug); 1 =+v-—1,

— 147 -



148 M. A. SHARAF, H. H.

then we get:
uf +uf = 2(® + )2 (3)

Since —o0 < w1 < 00, ug > 0 and y = uyug, it follows
from egs. (1) and (3) that:

1/2
u ::t{(x2+y2)1/2+:c} :

uy = {(:v2 +y?)? - x}m; )

us = z,

where the positive (negative), sign is when y > 0)(<
0). Differentiating eq. (1) with respect to ¢ and then
solving for 4, and 4y we get:

UL + ’U,Q:y Uly + usk

ulz 5 u2:—7

u? + u? u? + u3 t=% (5

where u; and us are given in terms of (z,y, z) from eq.

(4).
(c) Equations of motion

In the present paper we shall suppose that the mo-
tion is controlled by a gravitational potential, V =
V(z,y, z), so the equations of motion in Cartesian co-
ordinates (x,y, z) are:

. ov. oV OV
r= —: = —-—) 2= — 6
6m ) y ay ) az ( )

From the above equations we get:

Uy = 1 —02uy + 2 — Quglin iy + — oV
1 = U2 1491 1Ug 2182 8u1 s
(7a)
" 1 /. . . ov
= 12 (U%Uz — gy — 2utntip + 3—1@) ;
(7b)
N oV
ug = Dus’ (7c)
where U? = u2 + u3 The partial derivatives STV; j=

1,2,3 are glven in terms of the known partial deriva-
tlves a_ 9V and 2 ¥ by:

oo _ V. v .
uy | tor "2 dy’ (8a)
ov v oV

a—u2 = _UQ% + uq ?@, (Sb)
v ov

It should be noted that the equations of the present
section are general in the sense that it could be applied
for any dynamical system. In what follows we shall con-
sider the applications of these equations for the motion
of J, gravity perturbed trajectories.
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III. APPLICATION TO GRAVITY PERTURBED

TRAJECTORIES

(a) The potential V and its partial derivatives

For J, gravity perturbed trajectories, the potential
V is given as:

where
c=JouR%/2; 1= (22 + 2 + 2212,

with the constants: p the gravitational parameter,
which is universal gravitational constant times the
Earth’s mass; Jo the Earth’s dynamic oblateness (the
lowest-degree harmonic component of the gravity field),
and Rg is the mean Earth’s equatorial radius .The nu-
merical values of these constants are:

1 = 398600.8 km?® sec™2,
Jo = 1.0826157 x 1073,
Rg = 6378.135 km.

From Equation (9) we have:

v ,ua: T 522
—8; = + 3 (7’5) (]. — T—2> , (103)
oV wy y 522
)% pz z 522
B2 = —;3,’—4-30 (T_S) (3— 7‘—2) . (10c)

(b) Initial value algorithm

In what follows, the initial value algorithm for J;
gravity perturbed trajectories in parabolic cylindrical
coordinates will be considered. The algorithm is de-
scribed through its basic points: input, output and
computational steps.

Input:

® Z0,%0, 20, To, Yo, 20 at t = tg,
o the flight time, t = ty;

. %‘;, %‘zj and %‘z/, (eq. 10)

OUtPU-t’ Z0o, Yo, 3075'30,2./07 2':0 at t = tf

Computational steps:

1- Using egs. (1) and (10) into eq. (8), to find the
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analytical expressions of the partial derivatives %—‘;; 68—‘;

and %—‘z/ as functions in u;; 7 =1,2,3 as:
o 4uU? (~U*A - 8Bu? — 16p03)
- 7/2 ’
Ouy (U +4u2)"
(11a)
OV 4wU? (-U'A - 8Buj — 16u3)
Ouy (Ut 4 4u2)7/2 ’
(11b)
V. Bu (~240cu? + 36¢D — nD?)
Bus U4+ 4ud]? ’
(11c)
where

A=—-12c+uU* B=24c+pU% and D = U* +4ud.

2- The Equations of motion in eq. (7) can be written
as first order system in the form:

Ul = Ug,
Uz = us,
Uz = ug,
'd—i —uuy + wu? — 2ugugu —|—8V
4 U2 4wl 1ty QU4 Uy 8u1 3
a——l— w2ug — usul — 2uqugu +(’9V
5= 73 w2 2Ug 1U4Us Buy )
u_é?V
6_8’11,3.

3-Compute the initial conditions, ug;; 7 = 1,2, - -,6
for the above system by applying the transformations:
(113, Y, Z) - (-TOa Yo, ZO) and ($, y) Z) - (‘iloa yOa ZO) in €gs.
(4)and (5).

4 - Using these initial conditions to solve numerically
the above differential system for u;; j = 1,2,---,6 at
t =ty, where uy =y, us =1y and ug = i3 at t = t5.
5 - Using u;;‘u;; j = 1,2,3 to compute z,y,2 and
Z,9,2 at t = 1ty from the direct transformations of
Equations (1)

6 - End

(¢) Numerical applications

The purpose of this section is to demonstrate the
efficiency of the initial value problem using parabolic
cylindrical coordinates in producing very accurate final
state predictions for J5 gravity perturbed trajectories.

i) Test orbits

For the applications of the above formulations, we
consider seven test orbits given in the Appendix C of
Vinti’s book, 1998. All these orbits have the initial
time ¢ = o and each of different flight time t;, they
cover the three basic types of conic motion - elliptic,
parabolic and hyperbolic orbits characterized by the
initial conditions listed together with t;, in the first
columns of the tables of Appendix A of the present
paper. The components of the position vector for each
orbit are in km, while the corresponding components
of the velocity vector are in kim/sec.

ii) Reference orbits

For each orbit, the Js gravity perturbed equations
of motion in Cartesian coordinate [egs. (6) and (10)]
are solved by the classical Runge-Kutta integrator with
variable step size. A final state prediction was deter-
mined by reducing the step size until at least five deci-
mal places (< 10~2 meter (m)) stabilized in z(¢y), y(ts)
and z(ty). These values are considered as reference final
states solutions to the orbit they refer and are denoted

by:

rr = (zr(ts) yr(ts), 2r(ts))
and ix = (irltr) gmlty) 2rlt)  (12)

for the reference position and velocity vectors respec-
tively. The components of these vectors are listed for
each orbit in the second columns of the tables of Ap-
pendix A.

iii) Efficiency of parabolic cylindrical coordi-
nates

Upon the above reference solutions the efficiency
of the initial value problem for J; gravity perturbed
trajectories using the parabolic cylindrical coordinates
(PC- solution) may be checked by testing its abil-
ity in predicting final states within certain tolerances
as follows. Let r = (a(ty),y(ts), 2(tf)) and F =
(&(ts), y(ty), 2(ty)) are the final state of the PC- solu-
tion of a given orbit. The efficiency of the PC- solution

are then checked by the magnitude of the error criteria
AR and Av as:

AR = [(z—=2r)’+W—yr)’+ (2 - 23)2]1/2
x1000 in m (13)
Av = [(E—ip)+ (- gr) + (- 20)7]"

%1000 in m/sec (14)

such that, the small the values of AR and Aw, the
higher the efficiency will be, in this respect, we may
define an acceptable solution set (S.S) to the problem
at hand as:
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SS=((r,f): AR < e1,Av < €3) (15)

where €; 9 are given tolerances. For the very accurate
predictions required nowadays we may consider the tol-
erances €12 as:

€1 1 m + 10cm, (16a)
€2 = 0.25m/sec. (16b)

The components of the position and velocity vectors
r and #* of the PC solution are listed for each of the test
orbits in the third columns of the table of Appendix A.,
while the values of the errors AR and Av of eqgs. (13)
and(14) are given at the bottom of each table. These
values indicated in accordance of the acceptance so-
lution set that, the PC solution is very accurate and
efficient in predicating final state for J, gravity per-
turbed trajectories which is of extreme importance for
scientific researches as well as for military purposes.
Moreover, an additional efficiency of the algorithm is
that, for each of the test orbit, the step size of the inde-
pendent variable(time) used for solving the differential

equations of motion is larger than 70% of time step size*

used for obtaining its reference final state solution.
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APPENDIX: NUMERICAL RESULTS

Low EARTH ORBIT

Initial Conditions

Reference Solution

PC-solution

xo =2328.96594
Yo =-5995.21600
zp =1719.97894
%o =2.911101130
7o =-0.98164053
2y =-7.090499220
t; =10000 sec

Zr=-516.450939
yr =-3026.5115474
2r =5848.117544
@ =3.96659

Jr =-6.121618

tp =3-2.754866

AR =0.00302 (m)

z =-516.450938
y =-3026.5115496
z =5848.117543

£=3.966599
y=-6.121618
5=-2.754866

Av = 0.0 (m/sec)




