Estimation of the PAR Irradiance Ratio and Its Variability under Clear-sky Conditions at Ieodo in the East China Sea

  • Byun, Do-Seong (Ocean Research Laboratory, National Oceanographic Research Institute) ;
  • Cho, Yang-Ki (Department of Oceanography, College of Natural Sciences, Chonnam National University)
  • Published : 2006.12.31

Abstract

Determining 'photosynthetically active radiation' (PAR) is a key part of calculating phytoplankton productivity in a biogeochemical model. We explore the daily and seasonal variability in the ratio of PAR irradiance to total irradiance that occurred at Ieodo Ocean Research Station (IORS) in the East China Sea under clear-sky conditions in 2004 using a simple radiative transfer model (RTM). Meteorological data observed at IORS and aerosol optical properties derived from Aerosol Robotic Network observations at Gosan are used for the RTM. Preliminary results suggest that the use of simple PAR irradiance-ratio values is appropriate in calculating phytoplankton productivity as follows: an average of $0.44\;({\pm}0.01)$ in January to an average of $0.48\;({\pm}0.01)$ in July, with average daily variabilities over these periods of about $0.016\;({\pm}0.008)$ and $0.025\;({\pm}0.008)$, respectively. The model experiments demonstrate that variations in the major controlling input parameters (i.e. solar zenith angle, precipitable water vapor and aerosol optical thickness) cause PAR irradiance ratio variation at daily and seasonal timescales. Further, increases (>0.012) in the PAR irradiance ratio just below the sea-surface are positively correlated with high solar zenith angles and strong wind stresses relative to those just above the sea-surface.

Keywords

References

  1. Baker, K.S. and R. Frouin. 1987. Relation between photosynthetically available radiation and total insolation at the ocean surface under clear skies. Limnol. Oceanogr., 32, 1370-1377 https://doi.org/10.4319/lo.1987.32.6.1370
  2. Baretta-Bekker, J.G., J.W. Baretta, and W. Ebenhoh. 1997. Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake. J. Sea Res., 38, 195-211 https://doi.org/10.1016/S1385-1101(97)00052-X
  3. Byun, D.-S., X.H. Wang, M. Zavatarelli, and Y.-K. Cho. 2006. Effects of resuspended sediments and vertical mixing on phytoplankton spring bloom dynamics in a tidal estuarine embayment. J. Mar. Syst. (in press)
  4. Byun, D.-S., X.H. Wang, D.E. Hart, and Y.-K. Cho. 2005. Modeling the effect of freshwater inflows on the development of spring blooms in an estuarine embayment. Estuar. Coast. Shelf Sci., 65, 351-360 https://doi.org/10.1016/j.ecss.2005.06.012
  5. Colijn, F.G. and C. Cadee. 2003. Is phytoplankton growth in the Wadden Sea light or nitrogen limited? J. Sea Res., 49, 83-93 https://doi.org/10.1016/S1385-1101(03)00002-9
  6. Ebenhoh, W., J.G. Baretta-Bekker, and J.W. Baretta.1997. The primary production module in the marine ecosystem model ERSEM II, with emphasis on the light forcing. J. Sea Res., 38, 173-193 https://doi.org/10.1016/S1385-1101(97)00043-9
  7. Goff, J.A. 1957. Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers. p. 347-354. In: The semiannual meeting of the American society of heating and ventilating engineers, Murray Bay, Quebec, Canada
  8. Gregg, W.W. and K.L. Carder. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol. Oceanogr., 35, 1657-1675 https://doi.org/10.4319/lo.1990.35.8.1657
  9. Gregg, W.W. 2002. A coupled ocean-atmosphere radiative model for global ocean biogeochemical models. Technical report series on global modeling and data assimilation 22. ed. by M. Suarez. NASA/TM---2002-104606. 19 p
  10. Gueymard, C. 1994. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States. Sol. Energy, 53, 57-71 https://doi.org/10.1016/S0038-092X(94)90606-8
  11. Gueymard, C. 2001. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy, 71, 325-346 https://doi.org/10.1016/S0038-092X(01)00054-8
  12. Jacovides, C.P., F.S. Tymvios, D.N. Asimakopoulos, K.M. Theofilou, and S. Pashiardes. 2003. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor. Appl. Climatol., 74, 227-233 https://doi.org/10.1007/s00704-002-0685-5
  13. Jitts, H.R., A. Morel, and Y. Saijo. 1976. The relation of oceanic primary production to available photosynthetic irradiance. J. Mar. Freshwater Res., 27, 441-454 https://doi.org/10.1071/MF9760441
  14. Justus, C.G. and M.V. Paris. 1985. A model for solar spectral irradiance and radiance at the bottom and top of a cloudless atmosphere. J. Climat. Appl. Meteor., 24, 193-205 https://doi.org/10.1175/1520-0450(1985)024<0193:AMFSSI>2.0.CO;2
  15. Kasten, F. and A.T. Young. 1989. Revised optical air mass tables and approximation formula. Appl. Opt., 28, 4735 https://doi.org/10.1364/AO.28.004735
  16. Kim, J.-Y., B.-C. Choi, and S.-N. Oh. 2002. Spectral aerosol optical depth of Asian dust measured by sunphotometer at Kosan during ACE-Asia. J. Korean Meteorol., 38, 355-367. (In Korean)
  17. Koepke, P. 1984. Effective reflectance of oceanic whitecaps. Appl. Opt., 23, 1816-1824 https://doi.org/10.1364/AO.23.001816
  18. Knauss, J.A. 1997. The transfer of heat across the ocean surface. p. 39-58. In Introduction to physical oceanography. Prentice-Hall
  19. Morel, A. and R.C. Smith. 1974. Relation between total quanta and total energy for aquatic photosynthesis. Limnol. Oceanogr., 9, 591-600
  20. Morel, A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J. Geophys. Res., 93, 10,749-10,768
  21. Okulov, O., H. Ohvril, and R. Kivi. 2002. Atmospheric precipitable water in Estonia, 1990-2001. Bor. Environ. Res., 7, 291-300
  22. Paltridge, G.W. and C.M.R. Platt. 1976. Radiative Processes in Meteorology and Climatology. Elsevier, Amsterdam. 318 p
  23. Parsons, T.R., M. Takahashi, and B. Hargrave. 1984. Biological oceanographic processes. Pergamon Press, Oxford. 330 p
  24. Shim, J.S, I.S. Chun, and I.K. Min. 2004. Construction of Ieodo Ocean Research Station and its operation. Int. Soc. Offshore Polar Eng., 2004, 13, 1-7
  25. Smirnov, A, B.N. Holben, O. Dubovik, R. Frouin, T.F. Eck, and I. Slutsker. 2003. Maritime component in aerosol optical models derived from Aerosol Robotic Network data. J. Geophys. Res., 108, D1, 4033, doi:10.1029/2002JC002701
  26. Stramska, M. and T. Petelski. 2003. Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res., 108, C3, 3086, doi:10.1029/2002JC001321
  27. Tilzer, M.M. and C.R. Goldman. 1978. Importance of mixing, thermal stratification and light adaptation for phytoplankton productivity in Lake Tahoe (California-Nevada). Ecology, 59, 810-821 https://doi.org/10.2307/1938785
  28. Van Heuklon, T. K. 1979. Estimating atmospheric ozone for solar radiation models. Sol. Energy, 22, 63-68 https://doi.org/10.1016/0038-092X(79)90060-4
  29. Zavatarelli, M., J.W. Baretta, J.G. Baretta-Bekker, and N. Pinardi. 2000. The dynamics of the Adriatic Sea ecosystem: An idealized model study. Deep-Sea Res. Part I, 47, 937-970 https://doi.org/10.1016/S0967-0637(99)00086-2