High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Kwon, Suk-Yoon (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Park, Doo-Sang (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Yang, Kyoung-Sil (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Kim, Jae-Whune (Microplants Co., Ltd.) ;
  • Lee, Ki-Teak (Department of Food Science and Technology, Chungnam National University) ;
  • Kwak, Sang-Soo (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Lee, Haeng-Soon (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
  • Published : 2006.10.30

Abstract

Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Keywords

References

  1. Nibbering, P. H., E. Ravensbergen, M. M. Welling, L. A. van Berkel, P. H. C. van Berkel, E. K. J. Pauwels, and J. H. Nuijens (2001) Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. 69: 1469-1476 https://doi.org/10.1128/IAI.69.3.1469-1476.2001
  2. Soukka, T., J. Tenovuo, and M. Lenander-Lumikari (1992) Fungicidal effect of human lactoferrin against Candida albicans. FEMS Microbiol. Lett. 69: 223-228
  3. Zhang, G. H., D. M. Mann, and C. M. Tsai (1999) Neutralization of endotoxin in vitro and in vivo by a human lactoferrin-derived peptide. Infect. Immun. 67: 1353-1358
  4. Hasegawa, K., W. Motsuchi, S. Tanaka, and S. Dosako (1994) Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn. J. Med. Sci. Biol. 47: 73-85 https://doi.org/10.7883/yoken1952.47.73
  5. Ward, P. P., G. S. May, D. R. Headon, and O. M. Conneely (1992) An inducible expression system for the production of human lactoferrin in Aspergillus nidulans. Gene 122: 219-223 https://doi.org/10.1016/0378-1119(92)90054-S
  6. Liang, Q. and T. Richardson (1993) Expression and characterization of human lactoferrin in yeast Saccharomyces cerevisiae. J. Agric. Food. Chem. 41: 1800-1807 https://doi.org/10.1021/jf00034a053
  7. van Berkel, P. H. C, M. M. Welling, M. Geerts, H. A. van Veen, B. Ravensbergen, M. Salaheddine, E. K. J. Pauwels, F. Pieper, J. H. Nuijens, and P. H. Nibbering (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat. Biotechnol. 20: 484-487 https://doi.org/10.1038/nbt0502-484
  8. Arakawa, T., D. K. X. Chong, C. W. Slattery, and W. H. R. Langridge (1999) Improvements human health through production of human milk proteins in transgenic food plants. pp. 149-159. In: F. Shahidi (ed.). Chemicals via Higher Plant Bioengineering. Kluwer Academic/Plenum Publishers, New York, NY, USA
  9. Li, J. C, Z. Q. Ge, and Y. J. Yuan (2005) $Ce^{4+}$-stimulated ion fluxes are responsible for apoptosis and taxol biosynthesis in suspension cultures of taxus cells. Biotechnol. Bioprocess Eng. 10: 109-114 https://doi.org/10.1007/BF02932579
  10. Fischer, R., N. Emans, F. Schuster, S. Hellwig, and J. Drossard (1999) Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol. Appl. Biochem. 30: 109-112
  11. Mitra, A. and Z. Zhang (1994) Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein(s). Plant Physiol. 106: 977-981 https://doi.org/10.1104/pp.106.3.977
  12. Salmon, V., D. Legrand, M. C. Slomianny, I. el Yazidi, G. Spik, V. Gruber, P. Bournat, B. Olagnier, D. Mison, M. Theisen, and B. Merot (1998) Production of human lactoferrin in transgenic tobacco plants. Protein Expr. Purif. 13: 127-135 https://doi.org/10.1006/prep.1998.0886
  13. Anzai, H., F. Takaiwa, and K. Katsumata (2000) Production of human lactoferrin in transgenic plants. pp. 265-271. In: K. Shimazaki, H. Tsuda, and M. Tomita (eds.). Lactoferrin: Structure, Function and Applications. Elsevier Science BV New York, NY, USA
  14. Chong, D. K. and W. H. Langridge (2000) Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res. 9: 71-78 https://doi.org/10.1023/A:1008977630179
  15. Humphrey, B. D., N. Huang, and K. C. Klasing (2002) Rice expressing lactoferrin and lysozyme has antibioticlike properties when fed to chicks. J. Nutr. 132: 1214-1218
  16. Nandi, S., Y. A. Suzuki, J. Huang, D. Yalda, P. Pham, L. Wu, G. Bartley, N. Huang, and B. Lonnerdal (2002) Expres sion of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci. 163: 713-722 https://doi.org/10.1016/S0168-9452(02)00165-6
  17. Suzuki, Y. A, S. L. Kelleher, D. Yalda, L. Wu, J. Huang, N. Huang, and B. Lonnerdal (2003) Expression, characterization, and biologic activity of recombinant human lactoferrin in rice. J. Pediatr. Gastroenterol. Nutr. 36: 190-199 https://doi.org/10.1097/00005176-200302000-00007
  18. Rachmawati, D., T. Mori, T. Hosaka, F. Takaiwa, E. Inoue, and H. Anzai (2005) Production and characterization of recombinant human lactoferrin in transgenic Javanica rice. Breed. Sci. 55: 213-222 https://doi.org/10.1270/jsbbs.55.213
  19. Kim, K. Y., S. Y. Kwon, H. S. Lee, Y. Hur, J. W. Bang, and S. S. Kwak (2003) A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol. Biol. 51: 831-838 https://doi.org/10.1023/A:1023045218815
  20. Choi, S. M., O. S. Lee, S. Y. Kwon, S. S. Kwak, D. Y. Yu, and H. S. Lee (2003) High expression, of a human lactoferrin in transgenic tobacco cell cultures. Biotechnol. Lett. 25:213-218 https://doi.org/10.1023/A:1022341917735
  21. Kwon, S. Y., S. H. Jo, O. S. Lee, S. M. Choi, S. S. Kwak, and H. S. Lee (2003) Transgenic ginseng cell lines that produce high levels of a human lactoferrin. Planta Med. 69: 1005-1008 https://doi.org/10.1055/s-2003-45146
  22. Jeong, G. T. and D. H. Park (2005) Comparative evaluation of modified bioreactors for enhancement of growth and secondary metabolite biosynthesis using Panax ginseng hairy roots. Biotechnol. Bioprocess Eng. 10: 528-534 https://doi.org/10.1007/BF02932289
  23. Murashige, T. and F. Skoog (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  24. Jo, S. H., S. Y. Kwon, J. W. Kim, K. T. Lee, S. S. Kwak, and H. S. Lee (2005) Transgenic Siberian ginseng cultured cells that produce high levels of human lactoferrin. Kor. J. Plant Biotechnol. 32: 209-215
  25. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  26. Huang, N., J. Chandler, B. R. Thomas, N. Koizumi, and R. L. Rodriguez (1993) Metabolic regulation of alpha-amylase gene expression in transgenic cell cultures of rice (Oryza sa-tiva L.). Plant Mol. Biol. 23: 737-747 https://doi.org/10.1007/BF00021529
  27. Huang, J., L. Wu, D. Yalda, Y. Adkins, S. L. Kelleher, M. Crane, B. Lonnerdal, R. L. Rodriguez, and N. Huang (2002) Expression of functional recombinant human ly-sozyme in transgenic rice cell culture. Transgenic Res. 11: 229-239 https://doi.org/10.1023/A:1015663706259
  28. Wang, W., Z. J Zhao, Y. Xu, X. Qian, and J. J. Zhong (2005) Efficient elicitation of ginsenoside biosynthesis in cell cultures of Panax notoginseng by using self-chemically-synthesized jasmonates. Biotechnol. Bioprocess Eng. 10: 162-165 https://doi.org/10.1007/BF02932587