Enzymatic Release of Ferulic Acid from Ipomoea batatas L. (Sweet Potato) Stem

  • Min, Ji-Yun (Division of Environmental Forest Science, Gyeongsang National University) ;
  • Kang, Seung-Mi (Division of Forest Research, Gyeongsangnam-do Forest Environment Research Institute) ;
  • Park, Dong-Jin (Division of Environmental Forest Science, Gyeongsang National University) ;
  • Kim, Yong-Duck (Division of Environmental Forest Science, Gyeongsang National University) ;
  • Jung, Ha-Na (Division of Environmental Forest Science, Gyeongsang National University) ;
  • Yang, Jae-Kyung (Division of Environmental Forest Science, Gyeongsang National University) ;
  • Seo, Won-Teak (Department of Food Science, Jinju National University) ;
  • Kim, Seon-Won (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Karigar, Chandrakant S. (Department of Biochemicstry, Bangalore University) ;
  • Choi, Myung-Suk (Division of Environmental Forest Science, Gyeongsang National University)
  • 발행 : 2006.08.30

초록

Ferulic acid is a phenolic compound that serves as a major biosynthetic precursor of vanillin in higher plants. We investigated the ability of the 3 commercial enzymes - Ultraflo L, Viscozyme L, and ${\alpha}-Amylase$ - to induce the release ferulic acid from the Ipomoea batatas L. (sweet potato) stem. The rate of release for ferulic acid was optimal when Ultraflo L (1.0%) was used compared with the other enzymes, whereas Viscozyme L was most effective for the release of vanillic acid and vanillin. Thus, these enzymes may be useful for the large-scale production of ferulic acid and other phenolic compounds from sweet potato stem.

키워드

참고문헌

  1. Goodner, K. L., P. Jella, and R. L. Rouseff (2000) Determination of vanillin in orange, grapefruit, tangerine, lemon, and lime juices using GC-olfactometry and GCMS/MS. J. Agric. Food Chem. 48: 2882-2886 https://doi.org/10.1021/jf990561d
  2. Sakai, S., H. Kawamata, T. Kogure, N. Mantani, K. Terasawa, M. Umatake, and H. Ochiai (1999) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells. Mediat. Inflamm. 8: 173-175 https://doi.org/10.1080/09629359990513
  3. Graf, E. (1992) Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 13: 435-448 https://doi.org/10.1016/0891-5849(92)90184-I
  4. Kato, A., J. I. Azuma, and T. Koshijima (1983) A new feruloylated trisaccharide from bagasse. Chem. Lett. 12: 137-140 https://doi.org/10.1246/cl.1983.137
  5. Smith, M. M. and R. D. Hartley (1983) Occurrence and nature of ferulic acid substitution of cell-wall polysacchatides in graminaceous plants. Carbohydr. Res. 118: 65-80 https://doi.org/10.1016/0008-6215(83)88036-7
  6. Heinonen, M., D. Rein, M. T. Satue-Gracia, S. W. Huang, J. B. German, and E. N. Frankel (1998) Effect of protein on the antioxidant activity of phenolics compounds in a lecithin-liposome oxidation system. J. Agric. Food Chem. 46: 917-922 https://doi.org/10.1021/jf970826t
  7. Friedman, M. and H. S. Jurgens (2000) Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 48: 2101-2110 https://doi.org/10.1021/jf990489j
  8. Ou, S. and K.-C. Kwok (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 84: 1261-1269 https://doi.org/10.1002/jsfa.1873
  9. Yoon, S.-H., C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.- S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, and S.-W. Kim (2005) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol. Bioprocess Eng. 10: 378-384 https://doi.org/10.1007/BF02931859
  10. Sun, R.-C., X.-F. Sun, and S.-H. Zhang (2001) Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maize stems, oil palm frond fiber, and fast-growing poplar wood. J. Agric. Food Chem. 49: 5122-5129 https://doi.org/10.1021/jf010500r
  11. Mathew, S. and T. E. Abraham (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit. Rev. Biotechnol. 24: 59-83 https://doi.org/10.1080/07388550490491467
  12. Tran, L. H., M. Yogo, H. Ojima, O. Idota, K. Kawai, T. Suzuki, and K. Takamizawa (2004) The production of xylitol by enzymatic hydrolysis of agricultural wastes. Biotechnol. Bioprocess Eng. 9: 223-228 https://doi.org/10.1007/BF02942297
  13. Faulds, C. B., A. I. Sancho, and B. Bartolome (2002) Mono- and dimeric ferulic acid release from brewer's spent grain by fungal feruloyl esterases. Appl. Microbiol. Biotechnol. 60: 489-494 https://doi.org/10.1007/s00253-002-1140-3
  14. Bartolome, B. and C. Gomez-Cordoves (1999) Barley spent grain: release of hydroxycinnamic acids (ferulic and p-coumaric acids) by commercial enzyme preparations. J. Sci. Food Agric. 79: 435-439 https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<435::AID-JSFA272>3.0.CO;2-S
  15. Sorensen, H. R., A. S. Meyer, and S. Pedersen (2003) Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between alpha-L-arabinofuranosidases, endo-1,4-beta-xylanases, and beta-xylosidase activities. Biotechnol. Bioeng. 81: 726-731 https://doi.org/10.1002/bit.10519
  16. Micard, V., C. M. G. C. Renard, and J.-F. Thibault (1994) Studies on enzymic release of ferulic acid from sugar-beet pulp. Lebensm. Wiss. Technol. 27: 59-66 https://doi.org/10.1006/fstl.1994.1013
  17. Couteau, D. and P. Mathaly (1997) Purification of ferulic acid by adsorption after enzymic release from a sugar-beet pulp extract. Ind. Crop. Prod. 6: 237-252 https://doi.org/10.1016/S0926-6690(97)00014-9
  18. Kang, S. M., H. Y. Jung, Y. M. Kang, J. Y. Min, C. S. Karigar, J. K. Yang, S. W. Kim, Y. R. Ha, S. H. Lee, and M. S. Choi (2005) Biotransformation and impact of ferulic acid on phenylpropanoid and capsaicin levels in Capsicum annuum L. cv. P1482 cell suspension cultures. J. Agric. Food Chem. 53: 3449-3453 https://doi.org/10.1021/jf048675z
  19. Bartolome, B., C. B. Faulds, and G. Williamson (1997) Enzymic release of ferulic acid from barley spent grain. J. Cereal Sci. 25: 285-288 https://doi.org/10.1006/jcrs.1996.0091
  20. Faulds, C. B., G. Mandalari, R. LoCurto, G. Bisignano, and K. W. Waldron (2004) Arabinoxylan and mono- and dimeric ferulic acid release from brewer's grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicola insolens. Appl. Microbiol. Biotechnol. 64: 644-650 https://doi.org/10.1007/s00253-003-1520-3
  21. Cheetham, P. (1993) The use of biotransformations for the production of flavours and fragrances. Trends Biotechnol. 11: 478-488 https://doi.org/10.1016/0167-7799(93)90081-J
  22. Rosazza, J. (1995) Biocatalysis, microbiology and chemistry: the power of positive linking. ASM News. 61: 241-245
  23. Barghini, P., F. Montebove, M. Ruzzi, and A. Schiesser (1998) Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Appl. Microbiol. Biotechnol. 49: 309-314 https://doi.org/10.1007/s002530051174
  24. Bartolome, B., C. B. Faulds, M. Tuohy, G. P. Hazlewood, H. J. Gilbert, and G. Williamson (1995) Influence of different xylanases on the activity of ferulic acid esterases on wheat bran. Biotechnol. Appl. Biochem. 22: 65-73
  25. Kroon, P. A. and G. Williamson (1996) Release of ferulic acid from sugar beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol. Appl. Biochem. 23: 263-267