An Artificial Neural Network for Biomass Estimation from Automatic pH Control Signal

  • Hur, Won (Department of Bioengineering and Technology, College of Engineering, Kangwon National University) ;
  • Chung, Yoon-Keun (Department of Bioengineering and Technology, College of Engineering, Kangwon National University)
  • 발행 : 2006.08.30

초록

This study developed an artificial neural network (ANN) to estimate the growth of microorganisms during a fermentation process. The ANN relies solely on the cumulative consumption of alkali and the buffer capacity, which were measured on-line from the on/off control signal and pH values through automatic pH control. The two input variables were monitored on-line from a series of different batch cultivations and used to train the ANN to estimate biomass. The ANN was refined by optimizing the network structure and by adopting various algorithms for its training. The software estimator successfully generated growth profiles that showed good agreement with the measured biomass of separate batch cultures carried out between at 25 and $35^{\circ}C$.

키워드

참고문헌

  1. Schugerl, K. (1991) Common instruments for process analysis and control. pp. 6-25. In: R. J. Rehm, G. Reed, A. Puhler, and P. Stadler (eds.). Biotechnology 4. VCH Publishers Inc., New York, NY, USA
  2. Olsson, L. and J. Nielsen (1997) On-line and in situ monitoring of biomass in submerged cultivations. Trends Biotechnol. 15: 517-522 https://doi.org/10.1016/S0167-7799(97)01136-0
  3. Salgado, A. M., R. O. M. Folly, and B. Valdman (2001) Biomass monitoring by use of a continuous on-line optical sensor. Sens. Actuators B: Chem. 75: 24-28 https://doi.org/10.1016/S0925-4005(00)00692-4
  4. MacMichael, G., W. B. Armiger, J. F. Lee, and R. Mutharasan (1987) On-line measurement of hybridoma growth by culture fluorescence. Biotechnol. Tech. 1: 213-218 https://doi.org/10.1007/BF00155457
  5. Li, J. K. and A. E. Humphrey (1991) Use of fluorometry for monitoring and control of a bioreactor. Biotechnol. Bioeng. 37: 1043-1049 https://doi.org/10.1002/bit.260371109
  6. Na, J.-G., H. H. Kim, and Y. K. Chang (2005) On-line estimation of cell growth from agitation speed in DO-stat culture of a filamentous microorganism, Agaricus blazei. Biotechnol. Bioprocess Eng. 10: 571-575 https://doi.org/10.1007/BF02932296
  7. Ferreira, A. P., L. M. Vieira, J. P. Cardoso, and J. C. Menezes (2005) Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J. Biotechnol. 116: 403-409 https://doi.org/10.1016/j.jbiotec.2004.12.006
  8. Harris, C. M. and D. B. Kell (1983) The radio-frequency dielectric properties of yeast cells measured with a rapid, automated, frequency-domain dielectric spectrometer. Bioelectrochem. Bioenerg. 11: 15-28 https://doi.org/10.1016/0302-4598(83)85097-1
  9. Bogaerts, P. h. and R. Hanus (2001) On-line state estimation of bioprocesses with full horizon observers. Math. comput. Simul. 56: 425-441 https://doi.org/10.1016/S0378-4754(01)00312-3
  10. Chattaway, T., A. L. Demain, and G. Stephanopoulos (1992) Use of various measurements for biomass estimation. Biotechnol. Prog. 8: 81-84 https://doi.org/10.1021/bp00013a012
  11. Di Massimo, C., P. A. Lant, A. Saunders, G. A. Montague, M. T. Tham, and A. Morris (1992) Bioprocess application of model-based estimation technique. J. Chem. Technol. Biotechnol. 53: 265-277
  12. Maher, M., G. Roux, and B. Dahhou (1995) A method for estimating the state variables and parameters of fermentation systems. J. Chem. Technol. Biotechnol. 63: 153-159 https://doi.org/10.1002/jctb.280630210
  13. Thibault, J., V. V. Breusegem, and A. Cheruy (1990) Online prediction of fermentation variables using neural networks. Biotechnol. Bioeng. 36: 1041-1048 https://doi.org/10.1002/bit.260361009
  14. Pons, M. N., A. Rajab, J. M. Flaus, J. M. Engasser, and A. Cheruy (1988) Comparison of estimation methods for biotechnological processes. Chem. Eng. Sci. 43: 1909-1914 https://doi.org/10.1016/0009-2509(88)87061-1
  15. Shi, Y. and W.-K. Yuan (1988) Application of adaptive estimation in microbial fermentation processes. Chem. Eng. Sci. 43: 1915-1920 https://doi.org/10.1016/0009-2509(88)87062-3
  16. Di Massimo, C., G. A. Montague, M. J. Willis, M. T. Tham, and A. J. Morris (1992) Towards improved penicillin fermentation via artificial neural networks. Comp. Chem. Eng. 16: 283-291 https://doi.org/10.1016/0098-1354(92)80048-E
  17. James, S., R. Legge, and H. Budman (2002) Comparative study of black-box and hybrid estimation methods in fedbatch fermentation. J. Process Control 12: 113-121 https://doi.org/10.1016/S0959-1524(00)00065-2
  18. Baughman, D. R. and Y. A. Liu (1995) Neural Networks in Bioprocessing and Chemical Engineering. pp. 1-29. Academic Press, San Diego, CA, USA
  19. Jung Y.-K. and W. Hur (1997) Analysis of pH change and an automatic pH control with a new function: on-line estimation of acetic acid. Biotechnol. Bioprocess Eng. 90: 580-582
  20. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  21. Luli, G. W. and W. R. Strohl (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl. Environ. Microbiol. 56: 1004-1011
  22. Han, K. (1992) A Study of Acetic Acid Formation in Escherichia coli Fermentation. Ph.D. Thesis. University of California, Irvine, CA, USA
  23. Beluhan, D. and S. Beluhan (2000) Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor. Biotechnol. Lett. 22: 631-635 https://doi.org/10.1023/A:1005604926063
  24. Feitkenhauer, H. and U. Meyer (2004) Software sensors based on titrimetric techniques for the monitoring and control of aerobic and anaerobic bioreactors. Biochem. Eng. J. 17: 147-151 https://doi.org/10.1016/S1369-703X(03)00150-5
  25. Suzuki, T., T. Yamane, and S. Shimizu (1990) Phenomenological background and some preliminary trials of automated substrate supply in pH-stat model fed-batch culture using a set point of high limit. J. Ferment. Bioeng. 69: 292-297 https://doi.org/10.1016/0922-338X(90)90108-9
  26. San, K. and G. Stephanopoulos (1984) Studies on on-line bioreactor identification. IV. Utilization of pH measurements for product estimation. Biotechnol. Bioeng. 26: 1209-1218 https://doi.org/10.1002/bit.260261009
  27. Hur, W. and Y.-K. Chung (2005) On-line monitoring of IPTG induction for recombinant protein production using an automatic pH control signal. Biotechnol. Bioprocess Eng. 10: 304-308 https://doi.org/10.1007/BF02931846
  28. Lee, D. (2005) Component-based software architecture for biosystem reverse engineering. Biotechnol. Bioprocess Eng. 10: 400-407 https://doi.org/10.1007/BF02989822