References
- Taylor, P. P., D. P. Pantaleone, R. F. Senkpeil, and I. G. Fotheringham (1998) Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol. 16: 412-418 https://doi.org/10.1016/S0167-7799(98)01240-2
- Park, H. G., J. H. Do, and H. N. Chang (2003) Regioselective enzymatic acylation of multi-hydroxyl compounds in organic synthesis. Biotechnol. Bioprocess Eng. 8: 1-8 https://doi.org/10.1007/BF02932891
- Krapcho, J., C. Turk, D. W. Cushman, J. R. Powell, J. M. Deforrest, E. R. Spitzmiller, D. S. Karanewsky, M. Duggan, G. Rovansak, J. Schwartz, S. Natarajan, J. D. Godfrey, D. E. Ryono, R. Neubeck, K. S. Atwal, and E. W. Petrillo (1988) Angiotensin-converting enzyme inhibitors. Mercaptan, carboxyalkyl dipeptide, and phosphinic acid inhibitors incorporating 4-substituted prolines. J. Med. Chem. 31: 1148-1160 https://doi.org/10.1021/jm00401a014
- Lesson, P. A., X. Rabasseda, and J. Castaner (1997) FK-888. Drugs Future 22: 353-358
- Ager, D. J., I. G. Fotheringham, S. A. Laneman, D. P. Pantaleone, and P. P. Taylor (1997) The large scale synthesis of unnatural amino acids. Chim. Oggi. 15: 11-14
- Cho, B.-K., H. J. Cho, S.-H. Park, H. Yun, and B.-G. Kim (2003) Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions. Biotechnol. Bioeng. 81: 783-789 https://doi.org/10.1002/bit.10526
- Schulz, A., P. Taggeselle, D. Tripier, and K. Bartsch (1990) Stereospecific production of the herbicide phophinothricin (glufosinate) by transamination: isolation and characterization of a phosphinothricin-specific transaminase from Escherichia coli. Appl. Environ. Microbiol. 56: 1-6
- Meiwes, J., M. Schudok, and G. Kretzschmar (1997) Asymmetric synthesis of L-thienylalanines. Tetrahedron Asym. 8: 827-836
- Asano, Y., A. Yamada, Y. Kato, K. Yamaguchi, Y. Hibino, K. Hirai, and K. Kondo (1990) Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase from Bacillus sphaericus: use of natural and recombinant enzymes. J. Org. Chem. 55: 5567-5571 https://doi.org/10.1021/jo00308a012
- Xu, Q., G. Wang, X. Wang, T. Wu, X. Pan, A. S. C. Chan, and T. K. Yang (2000) The synthesis of L-(+)-homophenylalanine hydrochloride. Tetrahedron Asym. 11: 2309-2314 https://doi.org/10.1016/S0957-4166(00)00193-2
- Yang, Y. J., C. H. Lee, and Y. M. Koo (2004) Separation of amino acids by simulated moving bed using competitive Langmuir isotherm. Biotechnol. Bioprocess Eng. 9: 331- 338 https://doi.org/10.1007/BF02933053
- Ahn, J., J. Ryu, H. Jang, and J.-K. Jung (2004) Effect of growth rate on the production of L-proline in the fed-batch culture of Corynebacterium acetoacidophilum. Biotechnol. Bioprocess Eng. 9: 326-329 https://doi.org/10.1007/BF02942353
-
Syldatk, C., D. Volkel, U. Bilitewski, K. Krohn, H. Hoke, and F. Wagner (1992) Biotechnological production of unnatural L-amino acids from D,L-5-monosubstituted hydantions. II. L-
$\alpha$ - and L-$\beta$ -naphthylalanine. Biotechnol. Lett. 14: 105-110 https://doi.org/10.1007/BF01026234 -
Cooper, A. J. L., J. Z. Ginos, and A. Meister (1983) Synthesis and properties of the
$\beta$ -keto acids. Chem. Rev. 83: 321-358 https://doi.org/10.1021/cr00055a004 - Cho, B. K., J. H. Seo, T. W. Kang, and B. G. Kim (2003) Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase. Biotechnol. Bioeng. 83: 226-234 https://doi.org/10.1002/bit.10661
- Shin, J.-S. and B.-G. Kim (2002) Exploring the active site of amine: pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: How the enzyme controls substrate specificity and stereoselectivity. J. Org. Chem. 67: 2848-2853 https://doi.org/10.1021/jo016115i
- Peisach, D., D. M. Chipman, P. W. Van Ophem, J. M. Manning, and D. Ringe (1998) Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase. Biochemistry 37: 4958-4967 https://doi.org/10.1021/bi972884d
- Stewart, J. D. (2001) Dehydrogenases and transaminases in asymmetric synthesis. Curr. Opin. Chem. Biol. 5: 120-129 https://doi.org/10.1016/S1367-5931(00)00180-0
- Chao, Y. P., Z. J. Lai, P. Chen, and J. T. Chern (1999) Enhanced conversion rate of L-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12. Biotechnol. Prog. 15: 453-458 https://doi.org/10.1021/bp990044f
- Fotheringham, I. G., N. Grinter, D. P. Pantaleone, R. F. Senkpeil, and P. P. Taylor (1999) Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K-12. Bioorg. Med. Chem. 7: 2209-2213 https://doi.org/10.1016/S0968-0896(99)00153-4
-
Cho, B.-K., H. J. Cho, H. Yun, and B.-G. Kim (2003) Simultaneous synthesis of enantiomerically pure (S)- amino acids and (R)-amines using
$\alpha$ /$\beta$ -aminotransferase coupling reactions with two-liquid phase reaction system. J. Mol. Catal., B Enzym. 26: 273-285 https://doi.org/10.1016/j.molcatb.2003.07.006 - Lo, H.-H., S.-K. Hsu, W.-D. Lin, N.-L. Chan, and W.-H. Hsu (2005) Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminotransferase. Biotechnol. Prog. 21: 411-415 https://doi.org/10.1021/bp049756i
- Twomey, C. M. and S. Doonan (1997) A comparative study of the thermal inactivation of cytosol and mitochondrial aspartate aminotransferase. Biochim. Biophys. Acta 1342: 37-44
- Zale, S. E. and A. M. Klibanov (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnol. Bioeng. 25: 2221-2230 https://doi.org/10.1002/bit.260250908
-
Cho, B.-K., H.-Y. Park, J.-H. Seo, K. Kinnera, B.-S. Lee, and B.-G. Kim (2004) Enzymatic resolution for the preparation of enantiomerically enriched D-
$\beta$ -heterocyclic alanine derivatives using Escherichia coli aromatic L-amino acid transaminase. Biotechnol. Bioeng. 88: 512-519 https://doi.org/10.1002/bit.20280