Zeolite-Mediated Cation Exchange Enhances the Stability of mRNA during Cell-Free Protein Synthesis

  • Kim, You-Eil (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Dong-Myung (Department of Fine Chemical Engineering and Chemistry, Chungnam National University) ;
  • Choi, Cha-Yong (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2006.06.30

Abstract

The addition of zeolite particles enhances the stability of mRNA molecules in a cell-free protein synthesis system. When $20{\mu}g/{\mu}L$ of zeolite (Y5.4) is added to a reaction mixture of cell-free protein synthesis, a substantial increase in protein synthesis is observed. The stabilizing effect of zeolite is most dearly observed in an in vitro translation reaction directed by purified mRNA, as opposed to a coupled transcription and translation reaction. Upon the addition of zeolite in the in vitro translation reaction, the life span of the mRNA molecules is substantially extended, leading to an 80% increase in protein synthesis. The effect of zeolite upon the mRNA stability appears be strongly related to the cation exchange (potassium to sodium) reaction. Our results demonstrate the possibility of modifying this biological process using heterogeneous, non-biological substances in a cell-free protein synthesis system.

Keywords

References

  1. Doi , N., H. Takashima, M. Kinjo, K. Sakata, Y. Kawahashi, Y. Oishi, R. Oyama, E. Miyamoto-Sato, T. Sawasaki, Y. Endo, and H. Yanagawa (2002) Novel fluorescence labeling and high-throughput assay technologies for in vitro analysis of protein interactions. Genome Res. 12: 487-492 https://doi.org/10.1101/gr.218802
  2. Kim, J.-E., E.-J. Kim, and T.-H. Park (2005) Enhanced production of recombinant protein in Escherichia coli using silkworm hemolymph. Biotechnol. Bioprocess Eng. 10: 353-356 https://doi.org/10.1007/BF02931854
  3. Jewett, M. C., A. P. Oliveira, K. R. Patil, and J. Nielsen (2005) High-throughput transcriptome analysis in metabolic engineering. Biotechnol. Bioprocess Eng. 10: 385-399 https://doi.org/10.1007/BF02989821
  4. Oh, M.-K., D. R. Scoles, and S.-M. Pulst (2005) DNA microarray analysis of immediate response to EGF treatment in rat schwannoma cells. Biotechnol. Bioprocess Eng. 10: 444-450 https://doi.org/10.1007/BF02989827
  5. Kawarasaki, Y., T. Kawai, H. Nakano, and T. Yamane (1995) A long-lived batch reaction system of cell-free protein synthesis. Anal. Biochem. 226: 320-324 https://doi.org/10.1006/abio.1995.1231
  6. Kim, D.-M., T. Kigawa, C.-Y. Choi, and S. Yokoyama (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239: 881-886 https://doi.org/10.1111/j.1432-1033.1996.0881u.x
  7. Naslund, P. H. and T. Hultin (1970) Effects of potassium deficiency on mammalian ribosomes. Biochim. Biophys. Acta 204: 237-247
  8. Hultin, T. and P. H. Näslund (1974) Effects of thallium (I) on the structure and functions of mammalian ribosomes. Chem. Biol. Interact. 8: 315-328 https://doi.org/10.1016/0009-2797(74)90010-6
  9. Levine, H., M. R. Trindle, and K. Moldave (1966) Monovalent cation requirement for the aminoacyl transfer reaction in protein synthesis. Nature 211: 1302-1303 https://doi.org/10.1038/2111302a0
  10. Hultin, T. (1966) Factors influencing the puromycininduced release of protein from liver ribosomes. Biochim. Biophys. Acta 123: 561-573
  11. Pestka, S., R. Goorha, H. Rosenfeld, C. Neurath, and H. Hintikka (1972) Studies on transfer ribonucleic acidribosome complexes. XX. Peptidyl-puromycin synthesis on mammalian polyribosomes. J. Biol. Chem. 247: 4258-4263
  12. Cahn, F. and M. Lubin (1978) Inhibition of elongation steps of protein synthesis at reduced potassium concentrations in reticulocytes and reticulocyte lysate. J. Biol. Chem. 253: 7798-7803
  13. Kim, D.-M., Y.-E. Kim, and C.-Y. Choi (1995) Effect of zeolites on protein synthesis in a cell-free system from Escherichia coli. Biotechnol. Lett. 17: 1043-1046 https://doi.org/10.1007/BF00143097
  14. Kim, D.-M., Y.-E. Kim, and C.-Y. Choi (1996) Enhancement of protein synthesis with sodium ion in a cell-free system from Escherichia coli. J. Ferment. Bioeng. 82: 398-400 https://doi.org/10.1016/0922-338X(96)89158-6
  15. Fuchs, U., W. Stiege, and V. A. Erdmann (1997) Ribonucleolytic activities in the Escherichia coli in vitro translation system and in its separate components. FEBS Lett. 414: 362-364 https://doi.org/10.1016/S0014-5793(97)01046-6
  16. Jermutus, L., L. A. Ryabova, and A. Plückthun (1998) Recent advances in producing and selecting functional proteins by using cell-free translation. Curr. Opin. Biotechnol. 9: 534-548 https://doi.org/10.1016/S0958-1669(98)80042-6
  17. Kim, D.-M. and C.-Y. Choi (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol. Prog. 12: 645-649 https://doi.org/10.1021/bp960052l
  18. Gurevich, V. V., I. D. Pokrovskaya, T. A. Obukhova, and S. A. Zozulya (1991) Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal. Biochem. 195: 207-213 https://doi.org/10.1016/0003-2697(91)90318-N
  19. Pratt, J. M. (1984) Coupled transcription-translation in prokaryotic cell-free system. pp. 179-209. In: B. D. Hames and S. J. Higgins (eds.). Transcription and Translation: A Practical Approach. IRL press, NY, USA
  20. Ingle, C. A. and S. R. Kushner (1996) Development of an in vitro mRNA decay system for Escherichia coli: poly(A) polymerase I is necessary to trigger degradation. Proc. Natl. Acad. Sci. USA 93: 12926-12931
  21. Jung, G.-Y., E.-Y. Lee, Y. Kim, B.-W. Jung, S.-H. Kang, and C.-Y. Choi (2000) Stabilization effect of zeolite on DHFR mRNA in a wheat germ cell-free protein synthesis system. J. Biosci. Bioeng. 89: 193-195 https://doi.org/10.1016/S1389-1723(00)88736-8