Enhanced Clavulanic Acid Production in Streptomyces clavuligerus NRRL3585 by Overexpression of Regulatory Genes

  • Hung, Trinh Viet (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Ishida, Kenji (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Parajuli, Niranjan (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Liou, Kwang-Kyoung (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Lee, Hei-Chan (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction (IBR), Department of Pharmaceutical Engineering, Sun Moon University)
  • Published : 2006.04.30

Abstract

We constructed four recombinant plasm ids to enhance the production of clavulanic acid (CA) in Streptomyces clavuligerus NRRL3585: (1) pIBRHL1, which includes ccaR, a pathway-specific regulatory gene involved in cephamycin C and CA biosynthesis; (2) pIBRHL2, containing claR, again a regulatory gene, which controls the late steps of CA biosynthesis; (3) pGIBR containing afsR-p, a global regulatory gene from Streptomyces peucetius; and (4) pKS, which harbors all of the genes (ccaR/ claR/ afsR-p). The plasmids were expressed in S. clavuligerus NRRL3585 along with the $ermE^*$ promoter. All of them enhanced the production of CA; 2.5-fold overproduction for pIBRHL1, 1.5-fold for pIBRHL2, 1.6-fold for pGIBR, and 1.5-fold for pKS compared to the wild type.

Keywords

References

  1. Romero, J., P. Liras, and J. F. Martin (1984) Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 20: 318- 325 https://doi.org/10.1007/BF00270593
  2. Christopher, W. (2003) Antibiotics. pp. 107-123. ASM Press, Washington, D.C., USA
  3. Foulstone, M. and C. Reading (1982) Assay of amoxicillin and clavulanic acid, the components of augmentin, in biological fluids with high-performance liquid chromatography. Antimicrob. Agents Chemother. 22: 753-762 https://doi.org/10.1128/AAC.22.5.753
  4. Paradkar, A. S., K. A. Aidoo, and S. E. Jensen (1998) A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol. Microbiol. 27: 831-843 https://doi.org/10.1046/j.1365-2958.1998.00731.x
  5. Perez-Redondo, R., A. Rodriguez-Garcia, J. F. Martin, and P. Liras (1998) The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9- aldehyde reductase (car) gene. Gene 211: 311-321 https://doi.org/10.1016/S0378-1119(98)00106-1
  6. Alexander, D. C. and S. E. Jensen (1998) Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J. Bacteriol. 180: 4068-4079
  7. Ward, J. M. and J. E. Hodgson (1993) The biosynthetic genes for clavulanic acid and cephamycin production occur as a 'super-cluster' in three Streptomyces. FEMS Microbiol. Lett. 110: 239-242 https://doi.org/10.1111/j.1574-6968.1993.tb06326.x
  8. Perez-Liarena, F. J., P. Liras, A. Rodriguez-Garcia, J. F. Martin (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both $\beta$-lactam compounds. J. Bacteriol. 179: 2053-2059 https://doi.org/10.1128/jb.179.6.2053-2059.1997
  9. Jensen, S. E., A. S. Paradkar, R. H. Mosher, C. Anders, P. H. Beatty, M. J. Brumlik, A. Griffin, and B. Barton (2004) Five additional genes are involved in clavulanic acid biosynthesis in Streptomyces clavuligerus, Antimicrob. Agents Chemother. 48: 192-202 https://doi.org/10.1128/AAC.48.1.192-202.2004
  10. Madduri, K. and C. R. Hutchinson (1995) Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J. Bacteriol. 177: 1208-1215 https://doi.org/10.1128/jb.177.5.1208-1215.1995
  11. Iwata-Reuyl, D. and C. A. Townsend (1992) Common origin of clavulanic acid and other clavam metabolites in Streptomyces. J. Am. Chem. Soc. 114: 2762-2763 https://doi.org/10.1021/ja00033a086
  12. Townsend, C. A. and M. F. Ho (1985) Biosynthesis of clavulanic acid: origin of the C3 unit. J. Am. Chem. Soc. 107: 1066-1068 https://doi.org/10.1021/ja00290a057
  13. Salowe, S. P., E. N. Marsh, and C. A. Townsend (1990) Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: an unusual oxidative enzyme in natural product biosynthesis. Biochemistry 29: 6499-6508 https://doi.org/10.1021/bi00479a023
  14. Townsend, C. A. (2002) New reactions in clavulanic acid biosynthesis. Curr. Opin. Chem. Biol. 6: 583-589 https://doi.org/10.1016/S1367-5931(02)00392-7
  15. Marsh, E. N., M. D. T. Chang, and C. A. Townsend (1992) Two isozymes of clavaminate synthase central to clavulanic acid formation: cloning and sequencing of both genes from Streptomyces clavuligerus. Biochemistry 31: 12648-12657 https://doi.org/10.1021/bi00165a015
  16. Mosher, R. H., A. S. Paradkar, C. Anders, B. Barton, and S. E. Jensen (1999) Genes specific for the biosynthesis of clavam metabolites antipodal to clavulanic acid are clustered with the gene for clavaminate synthase 1 in Streptomyces clavuligerus. Antimicrob. Agents Chemother. 43: 1215-1224
  17. Paradkar, A. S. and S. E. Jensen (1995) Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. J. Bacteriol. 177: 1307-1314 https://doi.org/10.1128/jb.177.5.1307-1314.1995
  18. Matsumoto, A., H. Ishizuka, T. Beppu, and S. Horinouchi (1995) Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3(2). Actinomycetologica 9: 37-43 https://doi.org/10.3209/saj.9_37
  19. Kim, C. Y., H. J. Park, and E. S. Kim (2005) Proteomicsdriven identification of putative AfsR2-target proteins stimulating antibiotic biosynthesis in Streptomyces lividans. Biotechnol. Bioprocess Eng. 10: 248-253 https://doi.org/10.1007/BF02932021
  20. Umeyama, T., P. C. Lee, K. Ueda, and S. Horinouchi (1999) An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292 https://doi.org/10.1099/00221287-145-9-2281
  21. Niranjan, P., T. V. Hung, K. Ishida, T. T. Hang, H. C. Lee, K. K. Liou, and J. K. Sohng (2004) Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res. Microbiol. 156: 707-712 https://doi.org/10.1016/j.resmic.2005.03.005
  22. Hung, T. V., K. Ishida, H. C. Lee, and J. K. Sohng (2004) Expression of ccaR, claR and cas2 in Streptomyces clavuligerus shows overproduction of clavulanic acid. J. Biomoel. Reconstr. 1: 37-44
  23. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood (2000) Practical Streptomyces Genetics. pp. 125-200. The John Innes Foundation, Norwich, UK
  24. Kim, J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnol. Bioprocess Eng. 9: 459-464 https://doi.org/10.1007/BF02933486
  25. Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, S. I. Hung, and S. W. Kim (2001) Effecs of nutrients and culture conditions on morhology in the seed culture of Cephalosporium acremonium ATCC 20339. Biotechnol. Bioprocess Eng. 6: 156-160 https://doi.org/10.1007/BF02931963
  26. Basundhara, S., T. J. Oh, L. Rajan, K. K. Liou, H. C. Lee, C. G. Kim, and S. K. Sohng (2004) Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206 https://doi.org/10.1016/j.febslet.2004.04.033
  27. Garcia-Dominguez, M., J. F. Martin, B. Mahro, A. L. Demain, and P. Liras (1987) Efficient plasmid transformation of the $\beta$-lactam producer Streptomyces clavuligerus. Appl. Environ. Microbiol. 53: 1376-1381
  28. Arias, P., M. A. Fernandez-Moreno, and F. Malpartida (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J. Bacteriol. 181: 6958-6968