Effects of Morphology and Rheology on Neo-fructosyltransferase Production by Penicillium citrinum

  • Lim, Jung-Soo (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Jung-Mo (Department of Chemical and Biological Engineering, Korea University) ;
  • Park, Seung-Won (Food Ingredient Division, CJ Foods R&D, CJ Corp.) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2006.04.30

Abstract

In this study, we investigated the relationship between the morphology and the rheological properties of Penicillium citrinum to improve the production of neo-fructosyltransferase (neo-FTase). In a 2.5 L bioreactor culture of P. citrinum, it was observed that agitation speed and aeration rate had significant effects on the production of neo-FTase and that maximum cell mass and neo-FTase production obtained at 500 rpm and 1.5vvm were 8.14 g/L and $53.2{\times}10^{-3} U/mL$, respectively. Cell mass and neo-FTase production increased to 91.53 and 25.17%, respectively. In the morphology and rheology studies, P. citrinum showed a typical pellet morphology that was explained by a shaving mechanism; this phenomenon was significantly affected by carbon sources. The rheology of neo-FTase fermentation by P. citrinum was dependent on cell growth and fungal morphology.

Keywords

References

  1. Seo, E. S., J. H. Lee, J. Y. Cho, M. Y. Seo, H. S. Lee, S. S. Chang, H. J. Lee, J. S. Choi, and D. M. Kim (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose. Biotechnol. Bioprocess Eng. 9: 339-344 https://doi.org/10.1007/BF02933054
  2. Hayashi, S., M. Nonokuchi, K. Imada, and H. Ueno (1990) Production of fructosyl-transferring enzyme by Aureobasidium sp. ATCC 20524. J. Ind. Microbiol. 5: 395-400 https://doi.org/10.1007/BF01578099
  3. Yun, J. W. (1996) Fructooligosaccharides-Occurrence, preparation, and application. Enzyme Microb. Technol. 19: 107-117 https://doi.org/10.1016/0141-0229(95)00188-3
  4. Jung, K. H., J. Y. Lim, S. J. Yoo, J. H. Lee, and M. Y. Yoo (1987) Production of fructosyltransferase from Aureobosidium pullulans. Biotechnol. Lett. 9: 703-708 https://doi.org/10.1007/BF01024601
  5. Hayashi, S., Y. Shimokawa, M. Nogoguchi, Y. Tasasaki, H. Ueno, and K. Imada (1993) Nutritional status of Aureobasidium sp. ATCC 20524 for the production of $\beta$- fructofuranosidase. World J. Microbiol. Biotechnol. 9: 216-220 https://doi.org/10.1007/BF00327841
  6. Choi, D. B., K. A. Cho, W. S. Cha, and S. R. Ryu (2004) Effect of Triton X-100 on compactin production from Penicillium citrinum. Biotechnol. Bioprocess Eng. 9: 171-178 https://doi.org/10.1007/BF02942288
  7. Jung, K. H., J. W. Yun, K. R. Kang, J. Y. Lim, and J. H. Lee (1989) Mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme Microb. Technol. 11: 491-494 https://doi.org/10.1016/0141-0229(89)90029-X
  8. Hang, Y., E. Woodams, and K. Jang (1995) Enzymatic conversion of sucrose to kestose by fungal extracellular fructosyltransferase. Biotechnol. Lett. 17: 295-298 https://doi.org/10.1007/BF01190640
  9. Hirayama, M., N. Sumi, and H. Hidaka (1989) Purification and properties of a fructooligosaccharide-producing $\beta$-fructofuranosidase from Aspergillus niger ATCC 20611. Agric. Biol. Chem. 53:667-673
  10. Lee, M. S., J. S. Lim, C. H. Kim, K. K. Oh, S. I. Hong, and S. W. Kim (2001) Effects of nutrients and culture conditions on morphology in the seed culture of Cephalosporium acremonium ATCC 20339. Biotechnol. Bioprocess Eng. 6: 156-160 https://doi.org/10.1007/BF02931963
  11. Lim, J. S., J. H. Kim, C. Y. Kim, and S. W. Kim (2002) Morphological and rheological properties of culture broth of Cephalosporium acremonium M25. Korea-Australia Rheology J. 14: 11-16
  12. Sinha, J., J. T. Bae, J. P. Park, C. H. Song, and J. W. Yun (2001) Effect of substrate concentration on broth rheology and fungal morphology during exo-biopolymer production by Paecilomyces japonica in a batch bioreactor. Enzyme Microb. Technol. 29: 392-399 https://doi.org/10.1016/S0141-0229(01)00418-5
  13. Kim, J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnol. Bioprocess Eng. 9: 459-464 https://doi.org/10.1007/BF02933486
  14. Jimenez-Tobon, G. A., M. J. Penninckx, and R. Lejeune (1997) The relationship between pellet size and production of Mn(II) peroxidase by Phanerochaete chrysosporium in submerged culture. Enzyme Microb. Technol. 21: 537-542 https://doi.org/10.1016/S0141-0229(97)00065-3
  15. Yim, J. H., S. J. Kim, S. H. Aan, and H. K. Lee (2004) Physicochemical and rheological properties of a novel emulsifier, EPS-R, produced by the marine bacterium Hahella chejuensis. Biotechnol. Bioprocess Eng. 9: 405-413 https://doi.org/10.1007/BF02933066
  16. Riley, G. L., K. G. Tucker, G. C. Paul, and C. R. Thomas (2000) Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol. Bioeng. 68: 160-172 https://doi.org/10.1002/(SICI)1097-0290(20000420)68:2<160::AID-BIT5>3.0.CO;2-P
  17. Tucker, K. G. and C. R. Thomas (1993) Effect of biomass concentration and morphology on the rheological parameters of Penicillium chrysogenum fermentation broths. Trans. IchemE. Part C 71: 111-117