ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

  • Benbouzid, M.E.H. (Laboratoire d'Ingenierie Mecanique et Electrique(LIME), IUT of Brest, University of Western Brittany) ;
  • Diallo, D. (Laboratoire de Genie Electrique de Paris(LGEP) CNRS UMR) ;
  • Zeraoulia, M. (Laboratoire d'Ingenierie Mecanique et Electrique(LIME), IUT of Brest, University of Western Brittany, France) ;
  • Zidani, F. (LSPIE, University of Batna-1)
  • Published : 2006.10.01

Abstract

This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle(EV) or a Hybrid one(HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications(e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4-kW induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.

Keywords

References

  1. Benchaib, A., Rachid, A., Audrezet, E. and Tadjine, M. (1999). Real-time sliding mode observer and control of induction motor. IEEE Trans. Industrial Electronics 46, 1, 128-138 https://doi.org/10.1109/41.744404
  2. Bennett, S. M., Patton, R. J. and Daley, S. (1999). Sensor fault-tolerant control of a rail traction drive. Control Engineering Practice, 7, 217-225 https://doi.org/10.1016/S0967-0661(98)00151-8
  3. Bonivento, C, Isidori, A, Marconi, L. and Paoli, A (2004). Implicit fault-tolerant control: Application to induction motors. Automatica, 40, 355-371 https://doi.org/10.1016/j.automatica.2003.10.003
  4. Bose, B. K, Patel, N. R. and Rajashekara, K (1997). A neuro-fuzzy-based on-line efficiency optimization control of a stator flux-oriented direct vector-controlled induction motor drive. IEEE Trans. Industrial Electronics 44, 2, 270-273 https://doi.org/10.1109/41.564168
  5. Chan, C. C. (2002). The state of the art of electric and hybrid vehicles. Proc. IEEE 90,2,247-275
  6. Chan, C. C, Leung, W. S. and Ng, C. W. (1990). Adaptive decoupling control of induction motor drives. IEEE Trans. Industrial Electronics 37, 1, 41-47 https://doi.org/10.1109/41.45842
  7. Chen, H., Zhang, D. and Guo, Y. (2001). A novel green electric drive system. Proc. 2001 IEEE ICSMC, 5, 3157-3162
  8. Chen, Z. and Liu, L. (2003). Neural networks based electric motor drive for transportation systems. Proc. 2003 IEEE ITS, 2, 1378-1383
  9. De Rossier Correa, M. B., Jacobina, C. B., Da Silva, E. R. C. and Lima, A N. (2001). An induction motor drive system with improved fault tolerance. IEEE Trans. Industry Applications 37, 5, 873-879 https://doi.org/10.1109/28.924770
  10. Diallo, D., Benbouzid, M. E. H. and Makouf, A (2004). A fault-tolerant control architecture for induction motor drives in automotive applications. IEEE Trans. Vehicular Technology 53, 6, 1847-1855 https://doi.org/10.1109/TVT.2004.833610
  11. Eva Wu, N. (2004). Coverage in fault-tolerant control. Automatica, 40, 537-548 https://doi.org/10.1016/j.automatica.2003.11.015
  12. Faiz, J., Sharifian, M. B. B., Keyhani, A and Proca, A B. (2003). Sensorless direct torque control of induction motors used in electric vehicle. IEEE Trans. Energy Conversion 18, 1, 1-10 https://doi.org/10.1109/TEC.2002.805220
  13. Haddoun, A, Benbouzid, M. E. H. and Diallo, D. (2005). A loss-minimization DTC scheme for EV induction motors. Proc. 2005 IEEE VPPC, 315-321
  14. Jeong, Y. S., SuI, S. K, Schulz, S. E. and Patel, N. R. (2005). Fault detection and fault-tolerant control of interior permanent-magnet motor drive system for electric vehicle. IEEE Trans. Industry Applications 41, 1, 46-51 https://doi.org/10.1109/TIA.2004.840947
  15. Klima, J. (2003). Analytical investigation of an induction motor drive under inverter fault mode operations. lEE Proc.-Electric Power Applications 150, 3, 255-262
  16. Lascu, C. and Trzynadlowski, A M. (2004). A sensorless hybrid DTC drive for high-volume low-cost applications. IEEE Trans. Industrial Electronics 51, 5, 1048-1055 https://doi.org/10.1109/TIE.2004.834966
  17. Lee, H. D. and Sul, S. K (1998). Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle. IEEE Trans. Industrial Electronics 45, 4, 625-632 https://doi.org/10.1109/41.704891
  18. Lee, K. S. and Ryu, J. S. (2003). Instrument fault detection and compensation scheme for direct torque controlled induction motor drives. IEE Proc.-Control Theory Applications 150,4, 376-382
  19. Lopez-Toribio, J. C, Patton, R. J. and Daley, S. (2000). Takagi-Sugeno fuzzy fault-tolerant control of an induction motor. Neural Computing & Applications, 9, 19-28 https://doi.org/10.1007/s005210070031
  20. Mir, S., Islam, M. S., Sebastian, T. and Husain, I. (2004). Fault-tolerant switched reluctance motor drive using adaptive fuzzy logic controller. IEEE Trans. Power Electronics 19, 2, 289-295 https://doi.org/10.1109/TPEL.2003.823244
  21. Mutoh, N., Kaneko, S., Miyazaki, T., Masaki, R. and Obara, S. (1997). A torque controller suitable for electric vehicles. IEEE Trans. Industrial Electronics 44, 1, 54-63 https://doi.org/10.1109/41.557499
  22. Neacsu, D. O. and Rajashekara, K. (2001). Comparative analysis of torque-controlled IM drives with applications in electric and hybrid vehicles vehicle. IEEE Trans. Power Electronics 16, 2, 240-247 https://doi.org/10.1109/63.911148
  23. Parsa, L. and Toliyat, H. A. (2003). A selfreconfigurable electric motor controller for hybrid electric vehicle applications. Proc. 2003 IEEE IECON, 1,919-924
  24. Proca, A. B., Keyhani, A. and Miller, J. M. (2003). Sensorless sliding-mode control of induction motors using operating condition dependent models. IEEE Trans. Energy Conversion 18, 2, 205-212 https://doi.org/10.1109/TEC.2003.811717
  25. Rahman, Z., Ehsani, M. and Butler, K. L. (2000). An investigation of electric motor drive characteristics for EV and HEV propulsion systems. SAE Paper No. 2000-01- 3062
  26. Sepe, R. B., Fahmi, B., Morrison, C. and Miller, J. M. (2001). Fault tolerant operation of induction motor drives with automatic controller reconfiguration. Proc. 2001 IEEE IEMDC, 156-162
  27. Ta, C. M. and Hon, Y. (2001). Convergence improvement of efficiency-optimization control of induction motor drives. IEEE Trans. Industry Applications 37, 6, 1746-1754 https://doi.org/10.1109/28.968187
  28. Thybo, C. (2001). Fault-tolerant control of induction motor drive applications. Proc. 2001 IEEE ACC, 4, 2621-2622
  29. Zeraoulia, M., Benbouzid, M. E. H. and Diallo, D. (2005). Electric motor drive selection issues for HEV propulsion systems: A comparative study. Proc. 2005 IEEE VPPC, 280-287
  30. Zidani, E, Nait-Said, M. S., Diallo, D. and Benbouzid, M. E. H. (2001). Fuzzy optimal Volts/Hertz control method for an induction motor. Proc. 2001 IEEE IEMDC, 377-381