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ABSTRACT-A nonlinear analysis of torsional self-excited vibration in the driveline system for wheeled towing tractors
was presented, with a 2-DOF mathematical model. The vibration system was described as a second-order ordinary
differential equation. An analytical approach was proposed to the solution of the second-order ODE. The mathematical
neighborhood concept was used to construct the interior boundary and the exterior boundary. The ODE was proved to
have a limit cycle by using Poincaré-Bendixson Annulus Theorem when two inequalities were satisfied. Because the two
inequalities are easily satisfied, the self-excited vibration is inevitable and even the initial slip rate is little. However, the
amplitude will be almost zero when the third inequality is satisfied. Only in a few working modes of the towing tractor
the third inequality is not satisfied. It is shown by experiments that the torsional self-excited vibration in the driveline of

the vehicle is obvious.
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1. INTRODUCTION

Because severe vibrations of the driveline system of a
vehicle have great influence on driving performance, a
theoretical analysis of the dynamic behaviors is of very
significance for automotive engineers in the design of the
driveline system (Hwang et al., 2000). The self-excited
vibrations of the clutch and the gear rattle were studied
by by Zhu and Parker (Farong and Parker, 2005), Couderc,
Callenaere and Hagopian (Couderc ef al., 1998), Hwang,
Joseph and Ling (Hwang et al., 1998), and Christopher
and Shan (Christopher et al., 1992). However, few of
them discussed the varying longitudinal adhesive forces
on dynamic behaviors of the vehicle. In 1960’s, jumping
phenomenon was found when wheeled tractor was tow-
ing a heavy trailer. In their experiments by Bailey, Reece
and Wills (Bailey et al., 1962), jumping phenomenon
happened when the slip rate was bigger than 30%, and
traction was found to be vibrating. By experiments,
previous researchers (Ford and Karam, 1991; Jia et al.,
1996; Zheng et al., 1996; Jia et al., 1997a; 1997b; Zheng
et al., 1997, Jia et al., 1998; Wang, 2000; Zheng et al.,
2001; Ge et al., 2003) pointed out the torsional vibration
in the driveline is a kind of self-excited vibration. As a
result of their experiments, they pointed out that there
was self-excited vibration only when the slip rate was
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large enough. However, their research would be more
reasonable if they had considered the longitudinal
velocity of the tractor is not a constant when there is the
existence of the self-excited vibration. In mathematics, a
limit circle of a differential equation means the self-
excited vibration in the vibration system. However, none
of the previous researchers proved the self-excited
vibration in the driveline by mathematical analysis, and
they didn’t answer why there is no self-excited vibration
while the initial slip rate is little.

In this paper, a nonlinear analysis of self-excited
vibration in the driveline for wheeled tractor vehicle was
presented with mathematic proof. Firstly, a 2-DOF
vibration system of the driveline was built. The towing
working mode, in which the opening angle of the diesel
engine’s throttle valve is a constant, was considered, and
the angular velocity of the diesel engine was considered
as a slowly varying function. The system of the tractor
vehicle and the trailer was also considered. Then, the 2-
DOF vibration system was described as a second-order
ordinary differential equation (ODE), and Poincar-
Bendixson Annulus Theorem was used to prove that
there must exist a limit circle when two inequalities were
satisfied. Then, the amplitude of the self-excited vibrations
was proved to be almost zero when a third inequality was
satisfied. At last, Experiments show the existence of the
torsional self-excited vibration in wheeled tractor vehicle’s
driveline.
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2. MODELING

2.1. Torsional Vibration System of Tractor’s Driveline
The driveline of a rear-wheel-drive tractor vehicle can be
simplified as a torsional vibration system. The engine and
the flywheel are united as one cell, and modeled as an
inertial component. Driving wheels are united as one cell,
and modeled as another inertial component. The other
parts of the driveline are supposed to be torsional spring
and damper. This simplified vibration system is shown as
Figure 1.

While @, and 8, define the rotations of the tractor’s
driving wheel and the engine, the equations of motion for
the driving wheel and the engine are given by

J,0,=—K(8,- 6)-C(8, - 0.)-F R us)+FfR, (1)
Jepe=Te_K( 62'— ew)—c(.ee_ ew) . (2)
where

J.  equivalent rotary inertia of the tractor’s engine and
flywheel

J, driving wheels’ equivalent rotary inertia

1(s) adhesive coefficient

s slip

T, tractor’s engine torque

K torsional stiffness of the tractor’s driveline

C torsional damping of the tractor’s driveline

R, effective rolling radius of the driving wheel

F,; vertical loading on the tractor’s driving wheels

m; mass of the tractor

fi  tractor’s coefficient of rolling resistance.

In the case of the tractor towing a trailer (See Figure 2),
F); can be expressed as follows

mygL
) L]
1Z L,+LfCOS(a) 3

where

“Fiz

Te, ee
Torsional
Spring-Damper /\GW
1l v

Fiz

Figure 1. The dynamic model of the torsional vibration
system.

Fiz(s)
Fizf1 '

o« slope of the road

L, distance between front axle and the tractor’s center
of gravity

L, distance between rear axle and the tractor’s center of
gravity

The tractor vehicle and the trailer are pulled ahead by

the longitudinal friction forces on the driving wheels of

the tractor vehicle, and the longitudinal friction forces are

related to the adhesion coefficient and the vertical load-

ing acting on the wheels. The longitudinal friction force

is dependent principally on the adhesive coefficient /(s)

and the vertical loading. The adhesive coefficient u(s) is

expressible with respected to the slip s of the following

form as (Olson er al., 2000).

H(s)=ci[1 —exp(=cas)]—Css )

where ¢y, ¢; and ¢; are road constant parameters, which
are determined according to the tractor tire-road inter-
action. For convenience, however, the slip s may be
presented according to the definition as

s=1-—= ®)
o.R,
where u is the tractor’s longitudinal velocity.
As shown in Figure 2, the equation of motion for the
system of the tractor and the trailer is given by

(mi+my)i=F (s )—m gcos( a)f,—m,gcos( &)
fo—(m, + my)gsin( @) (6)

where
m, mass of the trailer
f»  trailer’s coefficient of rolling resistance
Addition of Equation (1), Equation (2) and Equation
(6) multiplied with R, yields

(my+my))R i+ J,6,+J,6,=T, —{ L mygcos(a) f;

L+L;
+mygcos(a) fo +(my+m, )gsin(a{)}Rw
(M

Although the diesel engine torque is a function of
many parameters, it is assumed here that the engine
torque is determined only by the opening angle of the
throttle valve. This means that the engine torque is kept

Trailer

e

}
Figure 2. The sketch of the tractor and the trailer.
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constant while the opening angle of the throttle valve
holds unchanged. When the tractor towing a trailer is
driven on a hillside road with a constant slope, and the
opening angle of the throttle valve remains constant, if
the engine torque satisfies the equation as follows

L +L,

myg cos(ax) fi+ ngcos(a)]f2+(n1]+m2)gsin(a)}Rw

®)

then, substituting Equation (8) into Equation (7) and then
integration yield

m+m Ru+J 06, ,+J 0,=
( 2) W wYw e’e

(m1+ mZ)sz (1_ So)ww0+ waw0+‘]ewe0

where s, @,, and @, are respectively the initial values of
s, 8, and 8,, and the initial values here mean the values
respected to the beginning of being constant opening
angle of the throttle valve. Substituting Equation (9) into
Equation (5) yields

,
§=by—b,, 200 (10)
4] 10 aw

where

b10=(m] + mz)Rfv(l s+ +(J w0 J.6,) 0,
(m, + m)R

a1

By the variable transformation of

€| — Csby— T.
@cbohip g, + L

1 1
(7K
(1), Equation (2), Equation (3), Equation (4) and
Equation (10), we have two equations as follows

“+6,— 6,, and from Equation

@w

e w0
.. . _710’\‘: yel w
$+tax+tai-ae +ab w0 = 12)
0 1 2 3 10x_{_g
€
and
c—ch ~ T
,g_.o_««_{rl__ R + £
. J 12w g
JQHE:Y;+Kx+C)é— = < (13)

~ mel, cos(a&)ch1
02 - )b,
(L +L )J e
f r W
o mel, cos(a)R c.
=

J (Lf +Lr)

By Equation (12) and Equation (13) the dynamic
behaviors of the 3D vibration system are described in
terms of x, ¥ and .. Thus, the 3" order ordinary
differential equation may be derived out theoretically by
elimination of the associated Equations (12) and (13).
However, to a 3-order ODE, whether it has a limit circle
is still a challenge in mathematics, and this 3-order
differential equation is difficult to analysis its trajectory.

2.2. Simplified 2-Dimension Model

The diesel engine’s angular velocity 8, is a slowly vary-
ing function while the opening angle of the throttle valve
is a constant. And this slowly varying function &, can be
expressed as follows:

68 = a)eT + hot (14)

where 7 =&t is the slow scale, 0 < ¢ (01,0 < by (v,
and @, is the mean value of &, during the time in which
the opening angle of the throttle valve is a constant.
Insertion of Equation (14) to Equation (11) yields

eel

(my+my) R (1=s50)+ T, + (0 = SO = T I )/ @,

b =
10 (m1 +m2)Rw2

(15)
Note that 6. is a slowly varying function when the
opening angle is a constant, we have the value of @, is

almost equal to the value of @, Insertion of Equation
(14) to by, in Equation (15) leads to the following

[4)
by =Zz)irgbl (16)
w,, (M +my) )R, (1=55)+J,

weT (m] + m2 )sz

where b =

Taking into accounted with Equation (14), we have

a)wo _ ww() 1 _ h()t

= — =)
. wol + - 7 .
it +hi ito (x+a)er+hot)(x+a)ﬂ)

i+6
e

By noting that the value of @, is almost equal to the
value of @, and 0 < byl @, ignoring some terms in the
above equation results in the equation of the following
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form as
wwO = a)wo weT (17)

x+¢9€ @ x+a)eT

Substituting Equation (16) and Equation (17) into
Equation (12) yields a set of two first-order differential
equations of the following form as

Edl'y
at
o . (18)
y+a)e
Q=—ax—ay+ae R p—
dr ot YT, Nyrw

As seen from Equation (18), the constant coefficients
of rolling resistance have no effect on the shape of the
trajectory of the dynamic system. To difficult values of
them, the trajectory just shifts left or right.

3. THE EXISTENCE OF A LIMIT CIRCLE
AND THE SELF-EXCITED VIBRATION

To a second-order ordinary differential equation as
Equation (18), the followings proved that its trajectory is
a limit circle based on Poincaré-Bendixson Annulus
Theorem. According to the differential equation theories,
a limit circle means the existence of the self-excited
vibration in the vibration system.

3.1. The Trajectory
Theorem: The trajectory of Equation (18) is a limit
circle, if the following two inequalities are satisfied:

ab
w_ >

eT ’
aO

(19)

Figure 3. The interior boundary and the exterior
boundary (for the existence).

%% b
R (20)
-] +a 3 —ae >0
a3b1 9 @op T 9,8 2

Proof:
3.1.1. The interior boundary (See Figure 3)
By all appearances, Equation (18) has only one critical

point A, and its coordinate is (a—zeczbl—@bl,O) (See

ay Ay
Figure 3).The interior boundary is comprised of three
curves. They are the following curves: an elliptic line
BVC (41), aline segment BD ({,) and a line segment CD
(£3).
(1) Curve ¢,
The equation for ¢, is given by

ao[x - (xA - JE&+ l):|2+y2=€f @1)

where & is an undetermined positive constant. Then,
the trajectory trend of Equation (18) with respected to
curve £, is given by

1 w T b CZblweT /(y+mer) g‘
= —ab-—S——ge +ae ta ———-a
lap —ah o 2 2 o o+ Y
[

(22)

Let y be the independent variable, and define the
dependant variable fi(y) as follows

[s13
dt

eql8

Der

@20
—ae tape VO 4 g

@
£1(y) = azhy —azh —=L
Y+t @,y

dl —ay
@ +1

(23)

Clearly, f,(y) is a continuous function at y=0, and £,(0)=

g —=— > 0. Hence, there is a neighborhood #, of
aqy +1

y=0, such that fi(y) >0, for ye h,. Let y,... be the

maximum value of y in #,, and let &=y, then, the

coordinate of y for the line ¢, is no larger than &, and is

no less than zero. Hence, we have

94 50 (Y ifand only if y=0)
dteqlS dteqlS
(2) Curve /,
The equation for ¢, can be easily written bellow
X=Xg 24

Then, the trajectory trend of Equation (18) with
respected to curve ¢, is given by

de,

=xX=y. 25
™ x=y (25)

eql8
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To /¢,, its coordinate of y is lower than zero. Hence, we

have
2,

dteql 8

(3) Curve ¢,

The equation for /, is given by

<0.

y-&,(x~x.)=0 (26)

where & is an undetermined positive constant. Then, the
trajectory trend of Equation (18) with respected to curve
4, is given by

ds

a,
3
=—(e +— +a)y -a (x +———-—
2
dteqlS ) V% % +1
® 27)
ch el
21y+w @
+ae -ab el
2 Sy+p

el

Let y be the independent variable, and define the
dependant variable f,(y) as follows

f (y) =—(¢ + 044q a (x
) (g4 ta)y-a)x + \/7 \/7“
o 28)
21y+a) W
+ae -ab el
2 3y+w
el

Clearly, f,(y) is a continuous function at y=0, and

£5(0) = —ap (—=

)< 0. Hence, there is a
\/_ Clo +1
neighborhood h, of y=0, such that f,(y)<0, for y € h,.
Let youin be the minimum value of y in region A, , then, a
curved line between Point D(x;, ,,:.) and Point C can be
found as /;. To /,, its coordinate of y is smaller than zero,
and is no larger than y,.;,. Hence, the following inequality
is satisfied

ds

<.
dt
eql8

Consequently, a closed interior boundary including
three line segments BVC-CD-DB is configurated. The
only critical point A is accommodated in the region,
which is bounded by the interior boundary.

3.1.2. The exterior boundary (See Figure 3)

The exterior boundary is composed of five curves. They
are the followings: an elliptic curve FT(/,), an elliptic
curve GKH(/;), a line segment HS(/,), a line segment
FG(/,) and a line segment TS(¥;).

(1) Curve /4,
The equation for ¢, is given by
2
ZINRY 29)
alx—(x ————)| +y =¢
0 y 4
/ao 1+ M)
ab,(1+ M)

where €, =@ —
4 el
=
positive constant. Then, the trajectory trend of Equation
(18) with respected to curve /£, is given by

, and M is an undetermined

c b a)eT

d/ (0 b Hlyre,
A-=2y|ab —ab -ae

2
(3,th18 y+a)

(30)
€

a4 ——t gy
0 1
la0(1+M)

a b
If % ” \/— (Inequahty (]9)), then there is a neighborhood

x of y=0, such that <0 ,for ye x.

dt

Clearly, if the posmve constant M is little enough (the
less, the better), then M € 7y . Hence, we have

Ay g8

=0ifand only if y=0).
dt

eql8 teq18

(2) Curve /;
The equation for /5 is given by

2

2
a,| x— (x +y =€ 3D

\/_(1+N)

where & and N are undetermined positive constants,
Then, the trajectory trend of Equation (18) with respected
to curve {5 can be presented in terms of x, y, X and y as
follows

ds £
5 =2g x—(x NENE- B Y ix+2yp (32)
0 4
dteq18 { /ao (1+N)
It is easy to prove the followings: To an arbitrary positive
CNif € >a3bl(l+N) " de, -0
constant /N, 1 — = e , then .
> A ,ao T dteqlS

As shown in Figure 3, however, in order to assure
Xg < X the following inequality is required as

e | Ly L + ‘s
\/% 4\/% \/;;(HM) \/570(1+N)
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That is
|1+ 1
4 1+ M
£ >—> T/
P
1+ N
5[1+¥—1 )
A" "1+Mm) ap(+N)
Therefore, Let g=max : ;=L ~@ |+1
-

1+ N

{(where the result of function max(a,b) is the larger of a
and b), then, to an arbitrary positive constant N, the
following inequality is satisfied
dss
dt

<0.

eql8

(3) Curve /4,
The equation for {¢ can be expressed below

X=xy (33)

Then, the trajectory trend of Equation (18) with
respected to curve /4 is given by

=X=y . (34)

The coordinate of y for ¢ is less than zero. Hence, we
have
dt

<0.

eql8

4) Curve ¢,
The equation for ¢, is given by

y=0 (35)

Then, the trajectory trend of Equation (18) with respected
to curve ¢, is given by

dr,
dt

b el
ora
T —asb

(36)

[
=y =—agyx—a.0+ae
eql8 el

The coordinate of x for 7, changes in the region given
below

Xp2 X2 Xg.
Note that (See Figure 3)
Xg> Xp,
Therefore
X<X4.

Hence, we have

dt,
dt

>—ayx, +a,e™ —ab, =0.
eql8

(5) Curve 44
The equation for ¢, is given by
V+E+ Ex—x)=0 37

where /4 is an undetermined positive constant @,, 2 &,

£
4 .
and X, =¥ —————— (See Figure 3). Then, the
T Ja M £

trajectory trend of Equation (18) with respected to curve
£ is given by

ds a £, £,
§ :(£6+—0—a1)y+a0—+a0 "y
& [
eql8 86 a()( + )
38
o (38)
w Yo, 2
+ab -ab el 4+ ae ~a,e
y+ ng

In the line segment 7S (see Figure 3), clearly

y>YS’

where YS =€, - & (xH —xT)=

1 1 €, :
—€ —E|E | =+ +
CU e e, 0em ) e an

It is clearly that there is at least a positive constant &,
such that & —a, <0 and Y, > —£,(1+M). Hence, we have

w
czb] el b
d/ w yia, 5 a
8 >qb-ab—L tge —ae -M-‘Le
371 1 2 2

3
dteq18 Y + a)eT

Note that Y; <y < —&, then

ds .
T e v
- E +
teql8 ( + ) 4 weT
e Yor
T, &b ao
+aze “6126 —M€—£4.

6

ab (1+M)

Letting 86=JA—4 and substituting £, =0, —— =
into the above inequality lead \/;;

ds 17}
d : >a3bl—-a3b] <
t ab(l+M
cats (1+M{~-~——3 A )J—Ma)
a el
]
cb—-———w”
: [asbl(HM)}
Vay

a
+2€
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ds
Similar to the proof of ——— ZO, it is easy to prove the
p dt y to p
eq

followings: To the line segment 7S, If Inequality (20)

a w ¢
0 T 2 ch
2

a 21 is satisfied,
(ab-Jaw_+ae 3 -age >0)
371 0 el 2 2
¢

d . 0
>
then it .

eql8

Now, a closed exterior boundary GKH-HS-ST-TF-FG
is made, only if the positive constant M is small enough.

3.1.3. The existence of a limit circle and self-excited
vibration
In the case that the interior boundary is intersected with
the exterior boundary, reduction of the interior boundary
should be made to certain dimensions until no inter-
section is found. Based on Poincaré-Bendixson Annulus
Theorem, the trajectory of Equation (18) is a limit circle.
We have thus proved the theorem, and the limit circle
means the existence of the torsional self-excited vibration
in the tractor’s driveline.

However, the two conditions (Inequality (19) and
Inequality (20)) are easy to be met, so there must exist
self-excited vibration in the driveline.

3.2. The Amplitude of the Self-excited Vibration

In fact, the self-excited vibration in the driveline is not
often found, although the present analysis implies
existence of the nonlinear dynamic phenomenon. The
reason is that the amplitude of the self-excited vibration
is almost zero whenever the initial state satisfies the
following inequality as

ach ch] ab
g —221,7 {3 39)
I @ w
eT el
Y
R
v

Eel
)

o
Y

Figure 4. The interior boundary and exterior boundary
(for the amplitude).

For a proof of the inference, new interior and exterior
boundaries about the critical point A should be given
again, as shown in Figure 4.

The interior boundary in Figure 4 is the same as the
one in Figure 3 and the exterior boundary is an ellipse
C((FRGSF) in Figure 4. The equation for the closed
elliptic curve /, can be easily written below

do(x —x,) +y’=€; (40)

where & is an undetermined positive constant. Then, the
trajectory trend of Equation (18) with respected to curve
4, is given by

d¢ @ b
2 =dvla b —ab L _ge +ae —-ay
31 Byt 2 2 1

el

eql8

D

Let y be the independent variable, and define the
dependant variable f,(y) as follows

Mo - (42)

, b, ¢
el a,e”" +aye T — gy

f, =a3b —ash
1) =a3h —a3 1 o
The function f,(y) is obviously a continuous and
differential function at y=0. Obviously, the derivative of
the function f,(y) can be obtained below

b bW,y
’ ot C()
) () = —a, —2A%L e agh —— g “3)
(y+a)eT) (y+a)eT)
Define the function f5(y) as follows
b b1

2@, o,

£ () = ~ay | eT2 e VT 1o h CAN 44)

2
(y+awr) (v+a.r)

Clearly, the function fi(y) is a continuous function at y=0,
and f5(0)<0 when the inequality (39) is satisfied. Hence,
there must exist a neighborhood %, of y=0, in which
f5(y)<0. Suppose the maximum of y in region 2y iS Vi,
and let &=y, then, to £, its coordinate of y is lower
than V.. and is more than —y,.,,. Distinguish with two
cases: First, if y>0, then f,(y)<f,(0)=0. Thus, yf,(y)<0.
Hence, we have

ds
<0
dt

eqld

Second, if y<0, then f,(y)>f,(0)=0. Thus, yf,(y)<0. Hence,
the following inequality is also satisfied as
&/
<0
dt
eql8
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Therefore, we have

ds
2 <0
dt

eql8

Again, if the interior boundary is intersected with the
elliptic curve FRGSF of the exterior boundary, dimension
of the interior boundary should be reduced to be less until
no intersection is found. When the inequality in Equation
(39) is satisfied, however, there is a limit circle in the
region restrained between the interior and the exterior
boundaries.

Because the y coordinate of the closed orbit (limit
cycle) varies in the range from yu.. t0 —Vim the
amplitude of the self-excited vibration is less than V...
Meanwhile, y,, is the maximum of the region in the
neighborhood of y=0, so that v, is almost zero.
Accordingly, when the inequality (39) is satisfied, the
amplitude of the self-excited torsional vibration is nearly
equal to zero, either.

To most working modes of vehicles and tractor
vehicles, the inequality (39) is satisfied. Therefore, the
torsional self-excited vibration can’t be found. However,
there are some working modes which don’t satisfy the
inequality (39), such as high slip rate working mode. A
tractor vehicle towing a very heavy trailer and a vehicle
running on an rapid uphill road are examples of high slip
rate, and the amplitude of the torsional self-excited
vibration can be observed and tested.

4. EXPERIMENTAL RESULTS AND
NUMERICAL SIMULATIONS

In order to test whether there is self-excited torsional
vibration or not, SZG4032 type tractor made by a local
vehicle manufacturer is employed for validation. On the
other hand, a load carrier used to act as a trailer. Dynamic
parameters of the tractor and the load carrier are
presented in Table 1. The SZG4032 tractors are used in
Chinese airports for towing cargo trailers. The load
carrier can produce required resistance force to increase
the traction of the tractor. The added resistance force is
expressed by the parameter of f,. The main instruments
are shown in Figure 5, other experimental instruments
include a DAQCard-6062E (made by NI), a SCXI1000
(made by NI) and accelerator sensors, etc. By those
instruments, data including vertical accelerations of the
front and rear axles, the longitudinal velocity of the
tractor, the angular velocity of the driving wheel, the
traction force and the slip rate are acquired. Though the
real-time slip and tractive force, the adhesive- coefficient
experimental curve is got, then ,the parameters of the
adhesive- coefficient fitting curve are calculated, as
shown in Table 1.

At first, the biggest initial slip which satisfies the

Table 1. the parameters of a tractor and trailer.

m, (kg) m, (kg) @,y (rad/s)
3480 2000 5.8
R, (m) J. (kg m) J, (kg m)
0.36 960 40
K (N/rad) C (N s/rad) C,
12000 80 0.8
C, G,
50 04

Five-wheel system

{.oad carrier (Trailer)

Rotation rate sensor

‘ Tractive force sensor

Figure 5. The sketch of the testing system.

inequality (39) is calculated as follows: Suppose the
function z(s,) is given by

b
ach <% ab
z=-a - 221, .31 (45)
)
weT el

Substituting the parameters into Equation (45) and
drawing the relation of z(s,) and s, yicld Figure 6 and

500
z

sof[ 0.0948

-1600 H
-1500 B

-2000

-2500

0 02 04 06 08 1
Initial slip S0

Figure 6. The relation of z(s,) and s,.
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Figure 7. Partial enlarged.

02 ——
y
01f .
o initial state: 0,-0.5
s, 0.09 )

oal time: 0~60s ]
02t .
03}

04}

05 . . . . ; . .

B4 035 03 202 02 015 01 005 O

Figure 8. The general view of the trajectory (s,=9%).
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Figure 9. Tthe localized view.

Figure 7 Figure 6 and Figure 7 show the amplitude of
torsional self-excited vibration is almost zero when the
initial slip s, is less than 9.48%. Suppose the initial slip
rate is 9%, the numerical solutions are shown in Figure 8

-
L

-
=]

The angular velocity of real axle *rad/s)
(=2 ~
LA

Z 4 6 & 10 1z 14 1% 18 20
Time (second)

Figure 10. The experimental results of the velocity of rear
axle.
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Figure 11. The frequency domain response (power
spectrum).

and Figure 9. Torsional self-excited vibration does exist,
but the amplitude is almost zero.

In the experiments, by increasing the resistance force
of the load carrier, the initial slip of the tractor adds to be
39.5%. According to the above analysis, this initial slip
does not satisfy Equation (39), the amplitude may be
large. The experimental results are shown as Figure 10
and Figure 11.

The results of numerical simulations are shown as
Figure 12 and Figure 13.

The frequency can be calculated by Average Method
as follows: Let x=Acos6, * =—Af;sin6, and % =—A T cos6,
then, from Equation (18) we have

1
I_LfT
—Afy? cos@+a,Acos@ —a Afy sinf—ae

ey

sing

. 46)
+aby——F—=0
1- LfTsinH
wwO
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Figure 12. The trajectory of equation (18) (5,=39.5%).
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Figure 13. Simulation results of the velocity of rear axle.

) 27 1
Note that L —1 ——c0s8d0 =0 and
—rsin

27 Coby——— .
L e 17rsinf cogGd@ =0 (where r is a constant),

Equation (46) multiplied with cos@/8 and integration in
[0,27] yield

fi=ay (47)

Substituting the parameters into Equation (47) yields
f=2.8H,. The existence of self-excited torsional vibration
in the tractor’s driveline is demonstrated in case of dif-
ferent initial slips. It is also shown from the comparison
of the frequency obtained by the present approximation
and experiment that the two results are in fairly good
agreement.

5. CONCLUSIONS

The existence of torsional self-excited vibration in
wheeled tractor’s driveline was proved by mathematical
analysis. Two conditions which assure the existence of
torsional self-excited vibration were put forward, and

most of vehicle’s working modes satisfy these conditions.
At the same time, The third condition which assures the
amplitude of the torsional self-excited vibration is almost
zero was also put forward, and most vehicle’s working
modes satisfy the third condition. The tractor’s working
modes do not satisfy the third condition are few, such as
towing a heavy trailer and running on the road whose
slope is big. Numerical simulations and experiments are
performed to show the existence of torsional self-excited
vibration in wheeled tractor’s driveline.
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