Application of Lipinski Rule for 3-amino-2-phenylimino-1,3-thiazolines and Their Syntheses

3-아미노-2-페닐이미노-1,3-티아졸린 유도체에 대한 Lipinski 법칙의 적용 및 그들의 합성

  • Park, Ik-Kyu (Organic Chemistry Lab, Korea Institute of Science and Technology) ;
  • Hahn, Hoh-Gyu (Organic Chemistry Lab, Korea Institute of Science and Technology)
  • 박익규 (한국과학기술연구원, 유기화학연구실) ;
  • 한호규 (한국과학기술연구원, 유기화학연구실)
  • Published : 2006.06.30

Abstract

For the development of new agrochemical fungicide 3-amino-2-phenylimino-1,3-thiazolines 2 were designed through the molecular modification based on isostere concept of 3-methyl-2-phenylimino-1,3-thiazolines 1 which showed antifungal activity against rice blast. All the compounds 2 were fit Lipinski rule and they had higher solubility in water than that of 1 by virtual calculation. We constructed 195 kinds of focused library of 3-amino-2-phenylimino-1,3-thiazolines through 6H-[1,3,4]thiadiazines (195 compounds) which synthesized from the reaction of thiourea 4 with $\gamma$-chloroacetoacetanilides 5.

신농약 살균제 개발을 목표로 벼도열병균에 대한 살균활성이 있는 3-메틸-2-페닐이미노-1,3-티아졸린 유도체 1의 분자수정을 통하여 3-아미노-2-페닐이미노-1,3-티아졸린 유도체 2를 isostere의 개념을 근거 하에서 디자인하였다. 화합물 2는 모두 Lipinski 법칙에 따랐으며 가상계산에 의하면 물에 대한 용해도가 화합물 1보다 높았다. 티오우레아 4를 $\gamma$-클로로아세토아세트아닐라이드 유도체 5와 반응시켜 중간체 6H-[1,3,4] 티아디아진 8을 통하여 3-아미노-2-페닐이미노-1,3-티아졸린 유도체 2(195종)의 집중 라이브러리를 구축하였다.

Keywords

References

  1. Armstrong, R. W., A. P. Combs, P. A. Tempest, S. D. Brown and T. A. Keating (1996) Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res. 29: 123-131 https://doi.org/10.1021/ar9502083
  2. Bae, S. Y., H. G. Hahn, K. D. Nam and H. Mah (2005a) Solid-phase synthesis of fungitoxic 2-Imino-1,3-thiazolines. J. Comb. Chem. 7(1):7-9 https://doi.org/10.1021/cc049854w
  3. Bae, S. Y., H.-G. Hahn and K. D. Nam (2005b) Syntheses of 1,3-imidazoline-2-thione and 2-phenylimino-1,3-thiazoline combinatorial libraries through different sequences of the same components. J. Comb. Chem. 7(6):826-836 https://doi.org/10.1021/cc049811f
  4. Campaigne, E. and T. P. Selby (1978) Thiazoles and thiadiazines. The condensation of ethyl 4-chloroacetoacetae with thiosemicarbazide (1). J. Heterocycl. Chem. 15:401-411 https://doi.org/10.1002/jhet.5570150308
  5. Chen, G., S. Zheng, X. Luo, J. Shen, W. Zhu' H. Liu, C. Gui, J. Zhang, M. Zheng, C. M. Puah, K. Chen and H. Jiang (2005) Focused combinatorial library design based on structural diversity. Druglikeness and Binding Affinity Score 7:398-406
  6. Dolle, R. E. (2005) Comprehensive survey of combinatorial library synthesis: 2004 7(6):739-798 https://doi.org/10.1021/cc050082t
  7. Fenyes, J. G. E. and I. Iwataki (2001) Combinatorial Chemistry Agrochemical discovery. pp.165-235, In ACS symposium series 774 (ed. D. R. Baker and N. K. Umetsu), American Chemical Society, Washington, DC
  8. Lengauer, T., C. Lemmen, M. Rarey and M. Zimmermann (2004) Novel technologies for virtual screening. Drug Discovery Today 9(1):27-34 https://doi.org/10.1016/S1359-6446(04)02939-3
  9. Lipinski, C. A., F. Lombardo, B. W. Dominy and P. J. Feeney (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46:3-26 https://doi.org/10.1016/S0169-409X(00)00129-0
  10. Patrick, G. L. (2005) An introduction to medicinal chemistry. 3rd ed., pp.197-198. Oxford University Press, New York
  11. Tice, C. M. (2001) Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag. Sci. 57:3-16 https://doi.org/10.1002/1526-4998(200101)57:1<3::AID-PS269>3.0.CO;2-6
  12. Viswanadhan, V. N. (1999) Prediction of solvation free energies of small organic molecules: additiveconstitutive models based on molecular fingerprints and atomic constants. J. Chem. Inf. Comput. Sci. 39:405-412 https://doi.org/10.1021/ci980154m
  13. 한호규, 남기달, 배수열, 박익규 (2004) 2-이미노-1,3-티아졸린 유도체의 최적화 및 벼 도열병에 대한 방제활성 (1). 농약과학회지 8(3):168-174