Degradation of the Herbicide Butachlor by Laboratory-synthesized Nanoscale $Fe^0$ in Batch Experiments

  • Kim, Hyang-Yeon (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, In-Kyung (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Han, Tae-Ho (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Shim, Jae-Han (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, In-Seon (BK21 Hazard Material Management Group, Graduate School of Department of Agricultural Chemistry, Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonnam National University)
  • Published : 2006.09.30

Abstract

Degradation of the herbicide butachlor was investigated using laboratory-synthesized zerovalent iron ($Fe^0$). The synthesized zerovalent iron was determined to be nanoscale powder by scanning electron microscopic analysis. To investigate degradation of butachlor using the synthesized nanoscale zerovalent iron, time-course batch experiments were conducted by treating the solution of butachlor formulation with the iron. More than 90% degradation of butachlor was observed by iron treatment within 24 h. The synthesized nanoscale zerovalent iron showed an increase in particle aggregation in the batch tests. Green rust formation and a pH drop in solutions were observed, suggesting that the oxidation of the iron occurred. When the iron was extracted with dichloromethane, a negligible concentration was found in the extract, suggesting that butachlor did not bind to the iron particles. GC/MS analysis detected the dechlorinated product as a major degradation product of butachlor in the solutions. The data indicate that laboratory-synthesized zerovalent iron functioned as a reductant to remove electron-withdrawing chlorine, giving the dechlorinated product.

Keywords

References

  1. Pearn, J. H. (1985) Herbicides and congenital malformations: a review for the paediatrician. Aust. Pediatr. J. 21, 237-242
  2. Wang, T. C., Lee, T. C., Lin, M. F. and Lin, S. Y. (1987) Induction of sister-chromatid exchanges by pesticides in primary rat tracheal epithelial cells and Chinese hamster ovary cells. Mutat. Res. 188, 311-321 https://doi.org/10.1016/0165-1218(87)90008-5
  3. Jha, A. M., Rab, S. F. and Singh, A. C. (1996) Cytotoxic activities of three herbicides in root tip cells of Vivia faba L. Envrion. Biol. 17, 211-216
  4. Hard, G. C., Iatropoulos, M. J., Thake, D. C., Wheeler, D., Tatematsu, M., Hagiwara, A., Williams, G. M. and Wilson, A. G. E. (1995) Identity and pathogenesis of stomach tumors in Spraque-Dawley rats associated with the dietary administration of butachlor. Exp. Toxicol. Pathol. 47, 95- 105 https://doi.org/10.1016/S0940-2993(11)80293-9
  5. Ateeq, B., Abul farah, M., Ali, M. N. and Ahmad, W. (2002) Induction of micronuclei and erythrocute alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor. Mutat. Res. 518, 135- 144 https://doi.org/10.1016/S1383-5718(02)00075-X
  6. Hill, A. B., Jefferies, P. R., Quistad, G. B. and Casida, J. E. (1997) Dialkylquinoneimine metabolites of chlroroacetanilide herbicides induce sister chromatid exchanges in cultured human lymphocytes. Mutat. Res. 395, 159-171 https://doi.org/10.1016/S1383-5718(97)00163-0
  7. Pal, O. R. and Vanjara, A. K. (2001) Removal of malathion and butachlor from aqueous solution by clays and orgonoclays. Sepa. Purif. Technol. 24, 167-172 https://doi.org/10.1016/S1383-5866(00)00226-4
  8. Xu, D., Xu, Z., Zhu, S., Cao, Y., Wang, Y., Du, X., Gu, Q. and Li, F. (2005) Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples. J. Colloid. Interf. Sci. 285, 27-32 https://doi.org/10.1016/j.jcis.2004.11.034
  9. Tanabe, A., Mitobe, H., Kawata, K. and Sakai, M. (1996) Monitoring of herbicides in river water by gas chromatography- mass spectrometry and solid-phase extraction. J. Chromatogr. A 754, 159-168 https://doi.org/10.1016/S0021-9673(96)00221-X
  10. Tanabe, A., Mitobe, H., Kawata, K., Yasuhara, A. and Shibamoto, T. (2001) Seasonal and spatial studies on pesticide residues in surface waters of the Shinano river in Japan. J. Agric. Food Chem. 49, 3847-3852 https://doi.org/10.1021/jf010025x
  11. Gaber, H. M., Comfort, S. D., Shea, P. J. and Machacek, T. A. (2002) Metolachlor dechlorination by zerovalent iron during unsaturated transport. J. Environ. Qual. 31, 962-969 https://doi.org/10.2134/jeq2002.0962
  12. Gibb, C., Satapanajaru, T., Comfort, S. D. and Shea, P. J. (2004) Remediating dicamba-contaminated water with zerovalent iron. Chemosphere 54, 841-848 https://doi.org/10.1016/j.chemosphere.2003.09.032
  13. Ghauch, A., Gallet, C., Charef, A., Rima, J. and Martin- Bouyer, M. (2001) Reductive degradation of carbaryl in water by zero-valent iron. Chemosphere 42, 419-424 https://doi.org/10.1016/S0045-6535(00)00073-4
  14. Ghauch, A. (2001) Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere 43, 1109-1117 https://doi.org/10.1016/S0045-6535(00)00184-3
  15. Wang, C.-B. and Zhang, W.-X. (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154-2156 https://doi.org/10.1021/es970039c
  16. Kanel, S. R., Manning, B., Charlet, L. and Choi, H. (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Techno. 39, 1291-1298 https://doi.org/10.1021/es048991u
  17. Gotpagar, J., Lyuksyutov, S., Cohn, R., Grulke, E. and Bhattacharyya, D. (1999) Reductive dehalogenation of trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies. Langmuir 15, 8412-8420 https://doi.org/10.1021/la990325x
  18. Hernandez, R., Zappi, M. and Kuo, C.-H. (2004) Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment. Environ. Sci. Technol. 38, 5157-5163 https://doi.org/10.1021/es049815o
  19. Kanel, S. R., Greneche, J. -P. and Choi, H. (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40, 2045-2050 https://doi.org/10.1021/es0520924
  20. Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K. and Mallouk, T. (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem. Mater. 13, 479-486 https://doi.org/10.1021/cm000288r
  21. Glaves, G. N, Klabunde, K. J., Sorensen, C. M. and Hadjipanayis, G. C. (1995) Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and $Fe_{2}B$ powders. Inorg. Chem. 34, 28-35 https://doi.org/10.1021/ic00105a009
  22. Shea, P. J., Machacek, T. A. and Comfort, S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environ. Pollut. 132, 183-188 https://doi.org/10.1016/j.envpol.2004.05.003
  23. Satapanajaru, T., Comfort, S. D. and Shea, P. J. (2003) Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J. Eviron. Qual. 32, 1726-1734 https://doi.org/10.2134/jeq2003.1726
  24. Oh, B.-T., Just, C. L. and Alvarez, P. J. (2002) Hexahydro- 1,3,5-trinitro-1,3,5- triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ. Sci. Technol. 35, 4341-4346 https://doi.org/10.1021/es010852e
  25. Oh, B.-T. and Alvarez, P. J. (2002) Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX) degradation in biologically-active iron columns. Water Air Soil Pollut. 141, 325-335 https://doi.org/10.1023/A:1021315723654
  26. Oh, B. -T. and Alvarez, P. J. (2004) Removal of explosive using an integrated iron-microbial treatment in flow-through columns. Bull. Environ. Contam. Toxicol. 73, 1-8
  27. Comfort, S. D., Shea, P. J, Machacek, T. A, Gaber, H. and Oh, B.-T. (2001) Field-scale remediation of a metolachlorcontaminated spill site using zerivalent iron. J. Environ. Qual. 30, 1636-1643 https://doi.org/10.2134/jeq2001.3051636x
  28. Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D. and Powers, W. L. (1997) Removal of TNT and RDX from water and soil using iron metal. Environ. Pollut. 97, 55-64 https://doi.org/10.1016/S0269-7491(97)00081-X
  29. Singh, J., Comfort, S. D. and Shea, P. J. (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J. Environ. Qual. 27, 1240-1245
  30. Ferrer, I., Thurman, E. M. and Barcelo, D. (1997) Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray. Anal. Chem. 69, 4547-4553 https://doi.org/10.1021/ac9704671
  31. Nakano, Y., Miyazaki, A., Yoshida, T., Ono, K. and Inoue, Y. (2004) A study on pesticide runoff from paddy fields to a river in rural region. 1: field survey of pesticide runoff in the Kozakura River, Japan. Water Res. 38, 3017-3022 https://doi.org/10.1016/j.watres.2004.02.013
  32. Singh, K. P., Maik, A., Mohan, D. and Takroo, R. (2005) Distribution of persistent organochlorine pesticide residues in Gomti River, India. Bull Environ. Contam. Toxicol. 74, 146-154 https://doi.org/10.1007/s00128-004-0561-3
  33. Vargo, J. D. (1998) Determination of sulfonic acid degradates of chloroacetanilide and chloroacetanilide herbicides in groundwater by LC/MS/MS. Anal Chem. 70, 2699-2703 https://doi.org/10.1021/ac971365d