References
- Pearn, J. H. (1985) Herbicides and congenital malformations: a review for the paediatrician. Aust. Pediatr. J. 21, 237-242
- Wang, T. C., Lee, T. C., Lin, M. F. and Lin, S. Y. (1987) Induction of sister-chromatid exchanges by pesticides in primary rat tracheal epithelial cells and Chinese hamster ovary cells. Mutat. Res. 188, 311-321 https://doi.org/10.1016/0165-1218(87)90008-5
- Jha, A. M., Rab, S. F. and Singh, A. C. (1996) Cytotoxic activities of three herbicides in root tip cells of Vivia faba L. Envrion. Biol. 17, 211-216
- Hard, G. C., Iatropoulos, M. J., Thake, D. C., Wheeler, D., Tatematsu, M., Hagiwara, A., Williams, G. M. and Wilson, A. G. E. (1995) Identity and pathogenesis of stomach tumors in Spraque-Dawley rats associated with the dietary administration of butachlor. Exp. Toxicol. Pathol. 47, 95- 105 https://doi.org/10.1016/S0940-2993(11)80293-9
- Ateeq, B., Abul farah, M., Ali, M. N. and Ahmad, W. (2002) Induction of micronuclei and erythrocute alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor. Mutat. Res. 518, 135- 144 https://doi.org/10.1016/S1383-5718(02)00075-X
- Hill, A. B., Jefferies, P. R., Quistad, G. B. and Casida, J. E. (1997) Dialkylquinoneimine metabolites of chlroroacetanilide herbicides induce sister chromatid exchanges in cultured human lymphocytes. Mutat. Res. 395, 159-171 https://doi.org/10.1016/S1383-5718(97)00163-0
- Pal, O. R. and Vanjara, A. K. (2001) Removal of malathion and butachlor from aqueous solution by clays and orgonoclays. Sepa. Purif. Technol. 24, 167-172 https://doi.org/10.1016/S1383-5866(00)00226-4
- Xu, D., Xu, Z., Zhu, S., Cao, Y., Wang, Y., Du, X., Gu, Q. and Li, F. (2005) Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples. J. Colloid. Interf. Sci. 285, 27-32 https://doi.org/10.1016/j.jcis.2004.11.034
- Tanabe, A., Mitobe, H., Kawata, K. and Sakai, M. (1996) Monitoring of herbicides in river water by gas chromatography- mass spectrometry and solid-phase extraction. J. Chromatogr. A 754, 159-168 https://doi.org/10.1016/S0021-9673(96)00221-X
- Tanabe, A., Mitobe, H., Kawata, K., Yasuhara, A. and Shibamoto, T. (2001) Seasonal and spatial studies on pesticide residues in surface waters of the Shinano river in Japan. J. Agric. Food Chem. 49, 3847-3852 https://doi.org/10.1021/jf010025x
- Gaber, H. M., Comfort, S. D., Shea, P. J. and Machacek, T. A. (2002) Metolachlor dechlorination by zerovalent iron during unsaturated transport. J. Environ. Qual. 31, 962-969 https://doi.org/10.2134/jeq2002.0962
- Gibb, C., Satapanajaru, T., Comfort, S. D. and Shea, P. J. (2004) Remediating dicamba-contaminated water with zerovalent iron. Chemosphere 54, 841-848 https://doi.org/10.1016/j.chemosphere.2003.09.032
- Ghauch, A., Gallet, C., Charef, A., Rima, J. and Martin- Bouyer, M. (2001) Reductive degradation of carbaryl in water by zero-valent iron. Chemosphere 42, 419-424 https://doi.org/10.1016/S0045-6535(00)00073-4
- Ghauch, A. (2001) Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere 43, 1109-1117 https://doi.org/10.1016/S0045-6535(00)00184-3
- Wang, C.-B. and Zhang, W.-X. (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154-2156 https://doi.org/10.1021/es970039c
- Kanel, S. R., Manning, B., Charlet, L. and Choi, H. (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Techno. 39, 1291-1298 https://doi.org/10.1021/es048991u
- Gotpagar, J., Lyuksyutov, S., Cohn, R., Grulke, E. and Bhattacharyya, D. (1999) Reductive dehalogenation of trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies. Langmuir 15, 8412-8420 https://doi.org/10.1021/la990325x
- Hernandez, R., Zappi, M. and Kuo, C.-H. (2004) Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment. Environ. Sci. Technol. 38, 5157-5163 https://doi.org/10.1021/es049815o
- Kanel, S. R., Greneche, J. -P. and Choi, H. (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40, 2045-2050 https://doi.org/10.1021/es0520924
- Ponder, S. M., Darab, J. G., Bucher, J., Caulder, D., Craig, I., Davis, L., Edelstein, N., Lukens, W., Nitsche, H., Rao, L., Shuh, D. K. and Mallouk, T. (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem. Mater. 13, 479-486 https://doi.org/10.1021/cm000288r
-
Glaves, G. N, Klabunde, K. J., Sorensen, C. M. and Hadjipanayis, G. C. (1995) Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and
$Fe_{2}B$ powders. Inorg. Chem. 34, 28-35 https://doi.org/10.1021/ic00105a009 - Shea, P. J., Machacek, T. A. and Comfort, S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environ. Pollut. 132, 183-188 https://doi.org/10.1016/j.envpol.2004.05.003
- Satapanajaru, T., Comfort, S. D. and Shea, P. J. (2003) Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J. Eviron. Qual. 32, 1726-1734 https://doi.org/10.2134/jeq2003.1726
- Oh, B.-T., Just, C. L. and Alvarez, P. J. (2002) Hexahydro- 1,3,5-trinitro-1,3,5- triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ. Sci. Technol. 35, 4341-4346 https://doi.org/10.1021/es010852e
- Oh, B.-T. and Alvarez, P. J. (2002) Hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX) degradation in biologically-active iron columns. Water Air Soil Pollut. 141, 325-335 https://doi.org/10.1023/A:1021315723654
- Oh, B. -T. and Alvarez, P. J. (2004) Removal of explosive using an integrated iron-microbial treatment in flow-through columns. Bull. Environ. Contam. Toxicol. 73, 1-8
- Comfort, S. D., Shea, P. J, Machacek, T. A, Gaber, H. and Oh, B.-T. (2001) Field-scale remediation of a metolachlorcontaminated spill site using zerivalent iron. J. Environ. Qual. 30, 1636-1643 https://doi.org/10.2134/jeq2001.3051636x
- Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D. and Powers, W. L. (1997) Removal of TNT and RDX from water and soil using iron metal. Environ. Pollut. 97, 55-64 https://doi.org/10.1016/S0269-7491(97)00081-X
- Singh, J., Comfort, S. D. and Shea, P. J. (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J. Environ. Qual. 27, 1240-1245
- Ferrer, I., Thurman, E. M. and Barcelo, D. (1997) Identification of ionic chloroacetanilide-herbicide metabolites in surface water and groundwater by HPLC/MS using negative ion spray. Anal. Chem. 69, 4547-4553 https://doi.org/10.1021/ac9704671
- Nakano, Y., Miyazaki, A., Yoshida, T., Ono, K. and Inoue, Y. (2004) A study on pesticide runoff from paddy fields to a river in rural region. 1: field survey of pesticide runoff in the Kozakura River, Japan. Water Res. 38, 3017-3022 https://doi.org/10.1016/j.watres.2004.02.013
- Singh, K. P., Maik, A., Mohan, D. and Takroo, R. (2005) Distribution of persistent organochlorine pesticide residues in Gomti River, India. Bull Environ. Contam. Toxicol. 74, 146-154 https://doi.org/10.1007/s00128-004-0561-3
- Vargo, J. D. (1998) Determination of sulfonic acid degradates of chloroacetanilide and chloroacetanilide herbicides in groundwater by LC/MS/MS. Anal Chem. 70, 2699-2703 https://doi.org/10.1021/ac971365d