DOI QR코드

DOI QR Code

Third-Harmonic Generation Microscopy for Material Characterization

  • Received : 2006.12.15
  • Published : 2006.12.25

Abstract

Third harmonic generation microscopy is described in the frame work of the theory of harmonic generation with Gaussian focused beams inside a bulk material as well as at the vicinity of an interface. This model is then applied to characterize different types of materials in terms of electronic third-order susceptibility. Examples of bulk glasses, poled glasses, laser-induced modifications in glasses and nanoparticles in solution are given in order to give a survey of the broad application field of THG microscopy in material characterization.

Keywords

References

  1. P. S. Banks, M. D. Feit, and M. D. Perry, 'High intensity direct third harmonic generation in BBO,' in Nonlinear Optics '98: Materials, Fundamentals, and Applications Topical Meeting, Kauai, USA, 1998, pp. 268-270 https://doi.org/10.1109/NLO.1998.710279
  2. D. Taverner, P. Britton, P. G. R. Smith, D. J. Richardson, G. W. Ross, and D. C. Hanna, 'Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascading erbium-doped fiber: periodically poled lithium niobate source,' Optics Letters, vol. 23, pp. 162-164 (1998) https://doi.org/10.1364/OL.23.000162
  3. B. Buchalter and G. R. Meredith, 'Third-order optical susceptibility of glasses determined by third harmonic generation,' Applied Optics, vol. 21, pp. 3221-3224 (1982) https://doi.org/10.1364/AO.21.003221
  4. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, 'Third-Harmonic Generation from Some Chalcogenide Glasses,' Journal of the American Ceramic Society, vol. 73, pp. 1794-1796 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb09838.x
  5. S. H. Kim, T. Yoko, and S. Sakka, 'Nonlinear Optical Properties of $TeO_2$-Based Glasses: ${La}_2O_3-TeO_2$ Binary Glasses,' Journal of the American Ceramic Society, vol. 76, pp. 865-869 (1992) https://doi.org/10.1111/j.1151-2916.1993.tb05307.x
  6. U. Gubler and C. Bosshard, 'Optical third-harmonic generation of fused silica in gas atmosphere: Absolute value of the third-order nonlinear susceptibility $x^{(3)}$,' Physical Review B, vol. 61, pp. 702-710 (2000) https://doi.org/10.1103/PhysRevB.61.10702
  7. T. Y. F. Tsang, 'Optical third harmonic generation at interfaces,' Physical Review A, vol. 52, pp. 4116-4126 (1995) https://doi.org/10.1103/PhysRevA.52.4116
  8. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, 'Nonlinear scanning laser microscopy by third harmonic generation,' Applied Physics Letters, vol. 70, pp. 922-924 (1997) https://doi.org/10.1063/1.118442
  9. L. Canioni, S. Rivet, L. Sarger, R. Barille, P. Vacher, and P. Voisin, 'Imaging of $Ca^{2+}$ intracellular dynamics with a third-harmonic generation microscope,' Optics Letters, vol. 26, pp. 515-517 (2001) https://doi.org/10.1364/OL.26.000515
  10. D. Yelin and Y. Silberberg, 'Laser scanning third-harmonic-generation-microscopy in biology,' Optics Express, vol. 5, pp. 169-175 (1999) https://doi.org/10.1364/OE.5.000169
  11. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, 'Third harmonic generation microscopy,' Optics Express, vol. 3, pp. 315-324 (1998) https://doi.org/10.1364/OE.3.000315
  12. D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, 'Imaging lipid bodies in cell and tissues using third-harmonic generation microscopy,' Nature Methods, vol. 3, pp. 47-53 (2006) https://doi.org/10.1038/nmeth813
  13. R. Barille, L. Canioni, L. Sarger, and G. Rivoire, 'Nonlinearity measurements of thin films by third-harmonic-generation microscopy,' Physical Review E, vol. 66, pp. 067602-067605 (2002) https://doi.org/10.1103/PhysRevE.66.067602
  14. J. M. Schins, T. Schrama, J. Squier, G. J. Brakenhoff, and M. Muller, 'Determination of materials properties by use of third-harmonic generation microscopy,' Journal of Optical Society of America B, vol. 19, pp. 1627-1634 (2002) https://doi.org/10.1364/JOSAB.19.001627
  15. V. Shcheslavskiy, G. Petrov. and V. V. Yakovlev, 'Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface,' Applied Physics Letters, vol. 82, pp. 3982-3984 (2003) https://doi.org/10.1063/1.1579866
  16. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, Cambridge, UK, 1990), p. 225 and appendix 10
  17. R. W. Boyd, Nonlinear Optics (Academic Press, New York, USA, 2003), pp. 90-99
  18. A. Brocas, Microscopies non-lin$\'{e}$aires: Analyses et Instrumentations (Thesis, University of Bordeaux 1, France, 2005)
  19. D. Oron, E. Tal, and Y. Silberberg, 'Depth-resolved multiphoton polarization microscopy by third-harmonic generation,' Optics Letters, vol. 28, pp. 2315-2317 (2003) https://doi.org/10.1364/OL.28.002315
  20. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, 'Depth-resolved structural imaging by third-harmonic generation microscopy,' Journal of Structural Biology, vol. 147, pp. 3-11 (2004) https://doi.org/10.1016/S1047-8477(03)00125-4
  21. T. Cardinal, E. Fargin, G. Le Flem, M. Couzi, L. Canioni, P. Segonds, L. Sarger, A. Ducasse, and F. Adamietz, 'Nonlinear optical properties of some niobium (V) oxide glasses,' European Journal of Solid State and Inorganic Chemistry, vol. 33, pp. 597-605 (1996)
  22. T. Cardinal, E. Fargin, G. Le Flem, and S. Leboiteux, 'Correlations between structural properties of $Nb_2O_5$-$NaPO_3$-${Na}_2B_4O_7$ glasses and non-linear optical activities,' Journal of Non-Crystalline Solids, vol. 222, pp. 228-234 (1997) https://doi.org/10.1016/S0022-3093(97)90118-6
  23. A. Malakho, M. Dussauze, E. Fargin, B. Lazoryak, V. Rodriguez, and F. Adamietz, 'Crystallization and second harmonic generation in thermally poled niobium borophosphate glasses,' Journal of Solid State Chemistry, vol. 178, pp. 1888-1897 (2005) https://doi.org/10.1016/j.jssc.2005.03.035
  24. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, 'Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication', Journal of Optical Society of America B, vol. 22, pp. 2138-2143 (2005) https://doi.org/10.1364/JOSAB.22.002138
  25. D. Blomer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tunnermann, 'Nonlinear refractive-index of fs-laser-written waveguides in fused silica,' Optics Express, vol. 14, pp. 2151-2157 (2006) https://doi.org/10.1364/OE.14.002151
  26. F. Rocco, A. K. Jain, M. Treguer, T. Cardinal, S. Yotte, P. Le Coustumer, C. Y. Lee, S. H. Park, and J. G. Ghoi, 'Optical response of silver coatings on CdS colloids,' Chemical Physics Letters, vol. 394, pp. 324-328 (2004) https://doi.org/10.1016/j.cplett.2004.07.022
  27. N. Kalyaniwalla, J. W. Haus, R. Inguva, and M. H. Birnboim, 'Intrinsic optical bistability for coated spheroidal particles,' Physical Review A, vol. 42, pp. 5613-5621 (1990) https://doi.org/10.1103/PhysRevA.42.5613

Cited by

  1. Evolution of the linear and nonlinear optical properties of femtosecond laser exposed fused silica vol.26, pp.11, 2009, https://doi.org/10.1364/JOSAB.26.002077
  2. Study of middle infrared difference frequency generation using a femtosecond laser source in LGT vol.42, pp.18, 2017, https://doi.org/10.1364/OL.42.003698
  3. Second-harmonic generation in sodium and niobium borophosphate glasses after poling under field-assisted silver ions anodic injection vol.104, pp.5, 2008, https://doi.org/10.1063/1.2973156