The Journal of GIS Association of Korea, Vol. 14, No. 4, pp. 379-389, December 2006

Design and Implementation of Map Databases for Telematics
and Car Navigation Systems using an Embedded DBMS

Yong-jin Joo* - Jung-yeop Kim** - Yong-ik Lee*** - Kyung-ky Moon™*** -

*AKEA

Soo-hong Par]

ABSTRACT

Map databases for CNS (Car Navigation System) can be accessed quickly and compressed
efficiently due to that these are usually recorded as in a PSF (Physical Storage Format).
However, it is difficult to create and manage data storage based on a file-system. To solve
these problems, DBMS needs to be combined with spatial data management. Therefore, we
developed an embedded DBMS with which to store data and conduct quick searches in CNS.
Spatial data could be easily managed and accessed using the compression method, Multi-Link,
spatial index, and spatial division. In the result, the proposed embedded DBMS searched
quickly and stably supported data management. If synchronization is applied in DBMS, it is
expected to utilize the advantages of an embedded DBMS.

Keywords : embedded spatial DBMS, car navigation system, multi-link, spatial index

(@] OF
- =

3t dlolel= E2]2 e AAEA(PSF : Physical Storage
o) GIS YA dolEE 2o §Fo raetn we
A Ho] 7ot E HEE AH|AE AE ZWE AFIAh AT, Y AlAF
719ke}l B4R e dolEH A HEE oA st AlA" I AT T3]
205 EAME 7HA o) gt ZAE Ayl A8 AT dFEL

Rl Aladlo e AL goly #e, Hol8 e 5713}, 1e|al AAgt H

9]

AR A g A
!

EIEat=2
Format)el] whe} AA = &

o,
o,

* Ph. D. Candidate, Department of Geoinformatic Engineering, Inha Univ. (dccmdrum@daum.net)
** Ph. D. Candidate, Department of Geoinformatic Engineering, Inha Univ. (jyfloo@empal.com)
*** Master Course, Department of Geoinformatic Engineering, Inha Univ. (a78leekey@naver.com)
**** Researcher, Research Institute for Military Science (starmkk@naver.com)
*k*x* Professor, Department of Geoinformatic Engineering, Inha Univ. (shpark@inha.ac.kr)

379

Yong—jin Joo - Jung-yeop Kim - Yong—ik Lee - Kyung—ky Moon - Soo—hong Park

o) B8] ME dolguels ALY oz F3t HeolH FEY Yies HEI}H
i ok wEha, & AolAe AR R AulAE A dojd e Adat whE Py
%—ﬂ%ﬂ%»ﬂ%%j%mwmlmMSE%%-ﬂ%ﬂﬂq.ﬂ%—%ﬂ &= 71,
Multi-Link, 33t A8, $028TE A85to] &2 21 o8& a4 e
oF ol &olst=F stgich ERL ofE Aol oMY HolE A Rdo] Ea
gt APL WE-E shglch. 203 0=, 7idE Embedded DBMS= 2 &85 whE 4
T2 PSFOl AHe R XA g HolEe #eld H3d F=2E
z| ¢gtch g% DBMSEE| $7]3t 7] AgaciH dolg o #A Aol F83 2}
FEE dolE e FA#Y SHolA A HolE #ert £0]g Embedded DBMS
o Fhe vs &8 = sle A2R Vddy
F80] : Mt E T3t dolg o], HuAld AAH, HE-BA, F3F Ads

1. Introduction

The practical uses of location information
as well as user requirements are increased in
a mobile environment that supports portability.
Especially, a telematics service for the movement
information usage of a location information
foundation is utilized with one of the u-1T839
strategy. The GIS DB technique is an important
element of a telematics service. It involves a
location-based service for car navigation, spatial
data schema, a spatial index and management
through the spatial reference of spatial data.

So far, CNS (Car Navigation System) data
is stored in formats such as HDD, CD-Rom,
DVD-ROM, and CF/SD memory card. Data
designed in PSF (Physical Storage Format)
are service maps that can be accessed quickly
and compressed efficiently. PSF, however, has

a complex file format, and is difficult to

380

manage due to offset values. Therefore, it is
difficult to transform original map data into
service map data, and neither is it easy to
update data. Also, applications not based on
PSF present the problem that there is no
compatibility.

To we need an
efficient method of utilizing DBMS to store

solve these problems,

large size spatial data. Also, we need a
management function for robust data manage-
ment of spatial data in CNS, data synchroni-
zation, and real-time processing. Therefore,
we constructed a map database for CNS
using an Embedded DBMS to supplement the
structure of the PSF foundation system and
compensate for it many faults. The database
of stable data
management and added efficient query processing

maintained the advantages

of large data through spatial index, space
division, Multi-Link and compression. Additionally,
we simplified the complex file structure and

Design and Implementation of Map Databases for Telematics and Car Navigation Systems using an Embedded DBMS

constructed a flexible schema and Multi-Link
structure, and we supported an efficient and
environment and
through

standard APIs such as map displays which

consistent developmental

guaranteed system interoperability
support multi-scale, POI search, compression
and spatial index. Consequently, these applica-
tions with DBMS provide not only the merits
of the PSF format but also those of proper
format in data management.

We introduce the necessity of the map
database technique for CNS service using
DBMS in Chapter 1. In Chapter 2, we describe
the DBMS requirement of a Map Database
and the design considerations necessary to
satisfy this. In Chapter 3, we explain the
developmental environment for system imple-
mentation, spatial module and functions to be
implemented such as data loader, compression,
Multi-Link, spatial index and the clustering
method. In Chapter 4, we perform a test of
the efficiency of spatial division and Multi-
Link in order to improve query processing.
Finally, Chapter 5 offers conclusions and
suggests possible future work.

2. Requirements and Design
Considerations

An embedded database is database software
that is used for data management in embedded
systems. Although a general database is focused
on complex query processes, an embedded
database performs only queries, and is designed

381

to a small size. An embedded database, also,
should be compatible with various operating
systems[1, 5].

To use spatial data in CNS, we combined
a database system with the management function
of spatial data. It costs less to develop an
embedded DBMS because there is no need to
provide every function of a commercial
DBMS[4]. However, the embedded DBMS
for CNS should provide functions that can
manage spatial data.

A GIS Database for CNS service stores
multiple objects such as road, background,
annotation and POl Spatial data occupies

much storage space and has a complex
storage structure between levels. So, the map
database requires a method providing processing
speed for large spatial data with efficient
query processing. And the database schema
must be simple and support a flexible structure.
Consequently, Spatial DBMS for CNS requires
modular development, unlike general spatial
databases.

We considered the relevant particulars in
applying the embedded database to the CNS.
First of all, the embedded database should
involve a compression method that can manage
enormous spatial data, and should reduce data
using a spatial index. Second, the embedded
database should perform within a proper query
time using a spatial clustering method due to
the load- that query processing gives. Finally,
the embedded database should optimize queries

to execute services in CNS.

Yong—jin Joo - Jung—yeop Kim - Yong—ik Lee - Kyung—ky Moon - Soo—hong Park

3. Implementation of a Prototype
Embedded Spatial DBMS

This chapter introduces the developmental
environment for system implementation and
explains methods that enhance data simplification
and query processing.

3.1 Design of the Prototype System for CNS
Service

We designed a spatial database for CNS
using embedded DBMS (SQLite). SQLite is
an embeddable SQL-driven database engine
that implements both the database engine and
its interface as a C/C++ library. SQLite is
extremely efficient, benefiting from a highly
optimized internal architecture and a small
memory footprint. SQLite supports a large
subset of the ANSI SQL-92 standard, and
can manage a large spatial database because
it can store 2TB data.

The SQLite library includes a very powerful

mechanism for adding user-defined functions
to the SQL command set. Custom functions
can even be written in many of the supported
language APIs, not just C/C++.

Because SQLite has these advantages, it
provides good performance in a mobile device
for CNS. We ported SQLite-wince-3.3.5 on
WinCE to design a spatial database, and
developed APIs that can show map data and
change levels using Pocket PC 2003 SDK.
Figure 1 shows the structure of the embedded
spatial database.

The original map data is divided by levels
and is converted. Also, spatial data are loaded
in the database using compression Data loader
applies input data to the schema and performs
the conversion finction. This eases data conversion
as well as the process of constructing a
database. Additionally, the compression method
is applied to decrease volume of the spatial
data. We developed Multi-Link to support an
efficient network-data hierarchy structure, because
network data neceds a stage presentation of

various levels and a hierarchy entity relation.

Telematics Spatial DBMS

Data Loader |

Load
Y

« Raw Data Conversion
« Level Extraction

» Spatial Data Compression * POl Data

SQLite Embedded OBM
» Main Map Data
» Route Guidance Data
* Route Planning Data

Application

}ﬁj\ » Map Display
" POl Search

* Route Planning
* Route Guidance
* Map Matching

» Spatial Data Index
* Spatial Division

¢ Spatial Operation
» Network Operation

Figure 1. The structure of the prototype system

382

Design and Implementation of Map Databases for Telematics and Car Navigation Systems using an Embedded DBMS

Using that structure, we utilized various
database management functions. Expanded SQLite
DBMS can perform simple spatial or non-
spatial queries, and can add or delete data.
Expanded SQLite DBMS improved search
performance through the spatial data index
and spatial division, and guaranteed the in-
dependence of the DB. Also, it can communicate
with other CNS applications through APIs.

3.2 Data Loader

The spatial data model should store the
spatial database in the embedded database. In
particular, the model should be designed with
the most suitable form for efficient storage.
And spatial data should be transformed to fit
RDBMS

when queried. Data loader is a tool that can

the internal table schema of the

satisfy these requirements, and play a part in
storing the original map data into the embedded
spatial database. As shown in Figure 2, raw
data such as that of the network, background,

annotation, and POI is extracted by level and

Shape Data

« Map, Road Input
« Klan Data compression

* transformation
* Xgata extract

begin transaction; BG3562627.50L

insert into BaS562627 values { L0G153566", 1.
300980, 553766, 301115, 554352 300,533}

commit transaction; S
BGRI62627500 RN

begin transaction; .
insert into BgF562627 values [106153568"
$1020500"

X020300380104002775080004 0056008006

Data Loader

« SOL loading Script export
« Input Data Typs Select

commit transaction: Loading Script

Figure 2. Data loading procedure

is converted to shape files. The loader applies
input data to the schema specification to be
defined and fills in the script for database
storage. Each table consists of an S table, which
is a spatial index, and an F table, which is

stored data.
3.3 Data Compression

Large-sized spatial data occupies nmuch storage
space in compact mobile devices for which
resources have been restricted. We require
the compression of spatial data to enhance
the utility of query processing for storage
space. As shown in Table 1, we customized
the WKB of the OGC foundation to the
model in order to store spatial data, and used
a bytepacking-compression method to reduce
the storage space of coordinate information.
The absolute starting point of the object that
expresses the location and differential vectors
is saved.

Given a line string or polygon in an
uncompressed map form, we first convert the
coordinates in the uncompressed map into
followed by a

base points sequence of

differential vectors. The differential vectors

Table 1. Structure of Vector Déta

Data Field Data Type Byte
Spatial Data Type Unsigned Char 1
Sum of Point Unsigned Long 4
X (first point) Long 4
Y (first point) Long 4
length of feature Unsigned Short 2
differential vector Bit variable

383

Yong—ijin Joo - Jung—yeop Kim - Yong—ik Lee - Kyung—ky Moon - Sco—hong Park

100,26 15030

302920,551360 120,15

Lol bit{zop)

Conrn bl (o)

Figure 3. Embedded Spatial Database—based compression

may be determined by the vector differences
between the current point and the previous
point or the first point. The series of differential
vectors produced can then be encoded to
produce the compressed data by Bytepacking-
Compression[7]. As a result, the compressibility
by this method was improved by 40 percent.

34 Multi-Link

Multi-Link is an important technique that
enhances the query performance for a hierar-
chical road network. Multi-Link reconstructs the
lower-level links through common attributes
links. It
supports an efficient hierarchy for retrieval of

corresponding to the upper-level
the network and in presentation. Generally,
the upper-level road data are constructed
hierarchically according to the criterion of the
lower-level network data. Because the upper-
level data consist of lower-level nodes and
links, the upper-level data share the complex
lower-level data structure. This results in a
large database and the accompanying difficulty
of management[2, 6]. this
structure diminishes the efficiency of the search
in DBMS. To solve these problems, we
designed the Multi-Link structure after integrating
the road data of the same attributes(3].

We assigned the lowest-level link with

In the result,

incremental number to constitute Multi-Link
using dynamic segmentation. The unique ID
number can be specified for a road link at
the lowest level. They are numbered in sequence
within a link and sorted in ascending order.
Link IDs are specified according to links for
lower level road displays. An integrated link
of roads at a higher level is represented
using link id at its origin link and link id at
its end link. The lowest-level link can be
used in road data, path-computation data, and
road-guidance data. In a preprocessing step,
we merge all layers of the unit parcel to
extract the common attribute of the links.
Afterwards, we provide topological information
link, To vyield link
numbers in order, we produce the set at the

on the node at the

upper-most level with the node and link
according to the rank and road number. A

) common attribute Nea .

Hish 5 & Mulifink
evef <l
vertex
P-4 node
Las AN dink
bag Lay
Laz s

Low M N v General

Level n,, ALIfK Wiz Nag F’E@ Ny Links
@ siibe PR

Figure 4. The structure of the General—Link
and Multi—Link

384

Design and Implementation of Map Databases for Telematics and Car Navigation Systems using an Embedded DBMS

common attribute of Multi-Link comes to
make with origin link ID and end link ID.
Also, the vertex of a Multi-Link is made of
the coordinate of nodes.

3.5 Spatial Index

There are R-tree and Grid indexing methods
for efficient searching. The R-tree method
consists of hierarchical MBR (Minimumm Boundary
Rectangle), and is efficient in updating an
index. The Grid method stores the target area
divided into grid cells. The Grid method is
efficient in area querying and performs with
fewer disks I/O. Implementation is easy with
a simple data structure. Also parcel, the unit
of data management in navigation, is similar
to grid. A grid index of various sizes can
enhance query performance for a hierarchical
parcel structure. Therefore, the present study
used a spatial index for spatial mobile devices
using a global fixed-grid index, efficient for
simple displays and calculations of the spatial
data of points and ranges. The following
formula (1) is the hashing function used for
the global fixed-grid index.

Grid ID(x) = int(x Minx) / SizeX)
Grid ID(y) = int(y Miny) / SizeY

3.6 Spatial Division using a Quad-Tree Method

We used a quad-tree method to enhance
database query speed excepting the spatial
index. The spatial index returns all entities
for the retrieval area. Retrieval speed will be

remarkably slow if many metropolitan area
entities are retriecved. Therefore, we need a
clustering method that considers the number
of entities.

In the case that a table is constructed with
each parcel, the amount of data influences
the query. Therefore, the spatial data needs
to be divided in order that queries can be
performed efficiently. We conducted spatial
division only when the number of the objects
exceeded the critical value. Theses division is
conducted until the number of the objects
does not exceed the critical value.

When the number of objects exceeded the
critical value, we divided the area into four
equal areas. The object is stored in the
division line in duplicate. If the critical value
is too low owing to the fact that there is
much duplication, it is important to select a
proper critical value. In the present study, we
determined the critical value (a=5,000) according
and

to the number of duplicate objects

retrieval time.

4. Performance Test

In this chapter, we test the efficiency of
spatial division and Multi-Link in order to
improve query processing. The performance
assessment compared query processing time
for spatial division. We also accomplished a
correlation analysis of the factors influencing
query processing time. Finally, the performance
assessment of Multi-Link for query performance
and stability was executed.

385

Yong—jin Joo - Jung—yeop Kim - Yong—ik Lee - Kyung—ky Moon - Soo—hong Park

4.1 Spatial Division Efficiency Estimation

Performance is irregular according to the
number of parcel entities when we store all
of the entities in one table. To solve these
problems, we executed the spatial division by
the Quad-Tree technique. As shown in Table
2, data size increased by 13% before the

Figure 5. Query Location in Study Area
{ + : 49 Point)

Table 2. Comparison of Spatial Division before with after (Critical value =

spatial division was applied, and the number
of total
increased by 5%.

individuals was confirmed to be

We constructed statistical data to analyze
the query processing time for 49 points within
a research area through spatial division. We
produced statistical data for the query time of
background data (BgTime), the number of
entities to be displayed (BgSum), and the number
of the vertex of the entity (BgNumPoint).
We queried 10 times for each point. We
calculated the arithmetic average and computed
the central tendency from the result.

As shown in Figure 6, the query processing
time was reduced by applying spatial division.

However, because Figure 6 cannot explain
that spatial division is more efficient in query
performance, we also conducted an advanced
That we searched, through a

analysis. is,

5,000)

Spatial Division Data Size (byte)

Rate of Increase (%)

Total Objects | Rate of Increase (%)

After 81702.912 113 359826 105
Before 93921.28 100 339576 100
1800
G 1600 3
£ o A
E |
- 1200
§ 1000 —a—QuadTree
8 a0 L I \ ~{—No QuadTree
§ o R\ A TAs R e Jat
§ WSS ATAY A WAV
0135791113151719212325272931333537394143454749
Query Location

Figure 6. Query Processing Time for each Query Location with Quad—Tree and Not
Quad—Tree

386

Design and Implementation of Map Databases for Telematics and Car Navigation Systems using an Embedded DBMS

correlation analysis, the item most related to
query time (Table 3).

We can see that query time (BgTime) is
concerned with the number of objects that is
displayed in the table (BgSum). We conducted
regression both for spatial division and NOT

spatial division.

BgTime = 4.6376xBgsum+237.1064
(NOT spatial division)
BgTime = 2.5736xBgSum+229.0901

(spatial division)

The number of objects using the two
regressions was the same.
Figure 7 shows that query time in spatial

division is faster than query time in NOT
spatial division. Therefore, retrieval time of
entities was reduced by applying quad-tree
and it is a technique that can increase query

efficiency.

4.2 Multi-Link Efficiency Estimation

The road data were divided according to
attribute similarity. Multi-Link is a technique
that considers divided links as one object. It
shows complex road data easily, and decreases
query time. Figure 8 shows the results for
the query time in level 3.

As can be seen, Multi-Link is more efficient
than NOT Multi-Link. That is, it maintained

Table 3. Correlation analysis for statistical items

BgTime BgSum BgNumPoint
BgTime 1
BgSum 0.818177098 1
BgNumPoint 0.444577704 0.503255 1

300000

250000 M
3 ¥
e ‘/*ﬁﬁ’
2 200000 ‘a&s
g o g
) -
£ l&
& 150000 -—"‘ —a— QuadTree
§ .,w‘ = ~fB-No QuadTres
§ 100000 ,——WIL-
3

o M

000
©R8388R888F 5 B8REB8SRERREE
Object Numbers (EA)

Figure 7. Compare Query Processing Time with space division before with after

387

Yong—jin Joo - Jung-yeop Kim - Yong—ik Lee - Kyung—ky Moon -

Soo—hong Park

25000

20000

15000

10000

& MultiLink
—&r— No MulfiLink

Query Processing Timelms)

5000

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Query Locaton

Figure 8. Query Processing Time for each Query Location with Multi—Link and NOT
Multi—Link

query time stably and conducted queries quickly.
Therefore, we can confirm that Multi-Link

improved query performance.

5. Conclusions

In this paper, we construct a map database
for CNS using an Embedded DBMS to
supplement the structure of the PSF system.
We developed an Embedded DBMS module
that supports data storage for CNS services
and an indexing technique for retrieval. We
developed compression, Multi-Link, and spatial
index to manage complex and large-sized
spatial data. We considered the load that
query processing applies to the embedded
system and improved query processing time
through spatial division and the Multi-Link
technique. We maintain the advantages of a
database offering stable management of data
and added efficient query processing of large

data through spatial index, space division
Multi-Link, and compression. Also, we eliminated
the complex file structure and substituted a
simple schema and Multi-Link structure.

The independence of the DB was guaranteed
through implementation of APIs for retrieval
and representation of data. And, we supported
an cfficient and consistent developmental
environment and guaranteed system intero-
perability through standard APL Consequently,
the developed DBMS maintains the advantages
of existing PSF through indexing and com-
pression, and supports efficient management
of data.

We hereafter will apply a synchronization
technique requiring research on real-time updating
of data. The efficient management of data
can apply the advantage of easy embedded
DBMS more on the maintenance side. Thus
we will commence research on the updating
of traffic information processing and real-time

map data.

388

(1]

[2]

(3]

Design and Implementation of Map Databases for Telematics and Car Navigation Systems using an Embedded DBMS

Reference

A. Tesanovic, D. Nystrom, J. Hansson, and
C. Jan. 2002, Nystrom, Embedded Databases
for Embedded Real-Time Systems: A Component-
Based Approach, tech. rep., Department of
Computer Science, Linkoping University and
Department of Computer Engineering, Malardalen
University

Bo Huang, 2002, An ODMG-based object
model for dynamic segmentation, IEEE ITS
International Conference

Dimitis Papadias, Jun Zhang, 2003, Query
Processing In Spatial Network Database

389

[4]

(3]

(6]

7]

Huang, B., Fwa, T. F., and Chan, W. T., 2004,
Pavement distress data collection system based
on mobile GIS. Transportation Research Record.
1889: 54-62.

M.A. Olson, September 2000, Selecting and
implementing an embedded database system,
IEEE Computer Society, 33(9): 27-34,
Maarten Vermeij, Peter Van OoSterom, 2000,
Storing And Using Multi-Scale Topological
Data Efficiently In A Client-Server DBMS
Environment

Shashi Shekhar, Yan Huang, Judy Djugash,
Changging Zhou, 2002, “Vector Map Compression:
A Clustering Approach”, Proceedings of the
tenth ACM international symposium on Advances
in geographic information systems

