Mechanical Properties of Polypropylene Filaments Drawn on Varying Post Spinning Temperature Gradients

  • Mukhopadhyay, S. (Department of Textile Engineering, Anuradha Engineering College) ;
  • Deopura, B.L. (Department of Textile Technology, Indian Institute of Technology) ;
  • Alagirusamy, R. (Department of Textile Technology, Indian Institute of Technology)
  • Published : 2006.12.30

Abstract

High Modulus and high tenacity polypropylene fibers have been prepared by drawing on a gradient heater. Results show that fiber properties are significantly affected by temperature profiles of final stage drawing on a gradient heater. The gradient drawn filaments showed superior mechanical properties when compared to filaments drawn over a constant temperature heater. Fibers with initial modulus of 16.4 GPa and tenacity of 670 MPa have been manufactured in the process. The nature of the gradient drawing had a significant effect on end properties. The superior mechanical properties are attributed to the high crystal perfection and crystallinity and low void fractions obtained at high draw ratios when drawn over a gradient heater.

Keywords

References

  1. K. H. Nitta and M. Takayanagi, J. Polym. Sci., B: Polym. Phys., 37, 357 (1999) https://doi.org/10.1002/(SICI)1099-0488(19990101)37:1<37::AID-POLB4>3.0.CO;2-M
  2. K. H. Nitta and M. Takayanagi, J. Polym. Sci., B: Polym. Phys., 38, 1037 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000415)38:8<1037::AID-POLB4>3.0.CO;2-R
  3. X. C. Zhang, M. F. Butler, and R. E. Cameron, Polym. Int., 48, 1173 (1999) https://doi.org/10.1002/(SICI)1097-0126(199911)48:11<1173::AID-PI287>3.0.CO;2-H
  4. I. C. Wang, M. G. Dobb, and J. G. Tomka, J. Text. Ins., 86, 383 (1995) https://doi.org/10.1080/00405009508658765
  5. P. Kar, Ph.D. Dissertation, IIT, Delhi (India), 1998
  6. I. M. Ward, 'Integration of Fundamental Polymer Science & Technology', Vol. 2, (P. J. Lemstra Ed.), pp.80-82, Chapman and Hall, London, 1998
  7. L. C. Wang, M. G. Dobb, and J. G. Tomka, J. Text. Ins., 86, 391 (1995)
  8. M. Ahmed, 'Polypropylene Fibers - Science and Technology', Elsevier, Amsterdam, p.389, 1992
  9. M. Ito, K. Tanaka, and T. Kanamoto. J. Polym. Sci., Polym. Phys., 25, 2127(1987) https://doi.org/10.1002/polb.1987.090251007
  10. Z. W. Wilchinsky, J. Appl. Phys., 30, 792 (1959)
  11. G. Farrow and D. Preston, Br. J. Appl. Phys., 11, 353 (1960) https://doi.org/10.1088/0508-3443/11/8/310
  12. Y. Yamamoto, M. Dewasawa, and S. Kinoshita, Sen-i Gakkaishi, 38, T-10 (1982)
  13. S. J. Mahajan, K. Bhaumik, and B. L. Deopura, J. Appl. Polym. Sci., 43, 49 (1991) https://doi.org/10.1002/app.1991.070430107
  14. H. Bodaghi, J. E. Spruiell, and J. L. White, 'Fibrillar Structure of PP Filaments', (H. Bodaghi Ed.), Hanser Publishers, Munich, p.100, 1988
  15. K. Yamada and M. Takayanagi, J. Appl. Polym. Sci., 27, 2091 (1982) https://doi.org/10.1002/app.1982.070270621
  16. S. Mukhopadhyay, B. L. Deopura, and R. Alagirusamy, J. Appl. Polym. Sci., 101, 838 (2006) https://doi.org/10.1002/app.23207
  17. S. Mukhopadhyay, B. L. Deopura, and R. Alagirusamy, J. Text. Ins., 96, 349 (2005) https://doi.org/10.1533/joti.2005.0043