Hormonal Changes in Cultured Medium on In Vitro Culture of Bovine Oviduct Epithelial Cells (BOEC) Supplemented with UK-4

소 난관 상피 세포의 체외 배양시 IL-4의 첨가에 의한 배양액내 호르몬 변화

  • Choi, S.H. (National Livestock Research Institute, RDA) ;
  • Cho, S.R. (National Livestock Research Institute, RDA) ;
  • Han, M.H. (National Livestock Research Institute, RDA) ;
  • Kim, H.J. (National Livestock Research Institute, RDA) ;
  • Son, D.S. (National Livestock Research Institute, RDA) ;
  • Sang, B.D. (National Livestock Research Institute, RDA) ;
  • Park, C.K. (Kangwon National University)
  • Published : 2006.12.31

Abstract

This study was conducted to investigate the hormonal changes in cultured medium during in vitro culture of bovine oviduct epithelial cells (BOEC) supplemented with interleukin (IL)-4 of 0.001, 0.01, 0.1 or 1 ng/ml. BOEC were collected from the oviduct and washed 3 times with 1% antibiotic-mycotic-DMEM medium and cultured at $39^{\circ}C$, 5% $CO_2$, 95% air for 24$\sim$120 hrs. The cultured media were analyzed hormonal changes with hormonal analyzing kit (progesterone (P4), estradiol (E2) : Perkin Elmer, USA) and Transforming growth factor (TGF)-$\beta$ with Eliza kit (Promega, USA). The production of P4 in 0.001 IL-4 was increased as the culture time increased. P4 production was significantly higher in the medium cultured for 120 hrs than 24 hrs (P<0.05). P4 production in 0.01 ng/ml group was similar to that of 0.001 ng/ml. The production of E2 in 0.001 and 0.01 ng/ml groups were increased to 72 hrs like P4 production and showed significantly different between the culture periods (P<0.05). After the culture for 96 hrs, P4 and E2 production were increased to 96 hrs, but decreased at 120 hrs. The production of TGF-$\beta$ showed no changes according to culture period or supplementation of IL-4. In conclusion, the supplementation of IL-4 can increase the production of P4 and E2 and might have important role for the successful pregnancy in bovine.

본 연구는 소 난관 상피 세포를 채취 체외 배양을 실시하고, 이에 착상과 관련이 있은 IL-4를 첨가하여 배양액내의 임신에 관련된 호르몬들(P4, E2, TGF-$\beta$)의 변화를 관찰함으로써, 소 난관 상피 세포와 착상과의 관계를 구명하고자 실시하였으며, 그에 따른 결과는 다음과 같다. 소 난관 상피 세포의 체외 배양시 IL-4 첨가에 의한 배양액내의 P4의 생산은 0.001 ng/ml의 IL-4를 첨가한 배양액의 P4의 농도는 배양 시간이 경과할수록 증가하는 경향을 보였으며, 24시간보다 120시간에서는 약 2배의 생산을 보여 유의적인 차이를 나타냈다(P<0.05). 0.01 ng/ml의 경우에도 0.001의 경우와 유사한 경향을 보였으나, 0.001 ng/ml의 경우보다는 다소 생산량이 낮았다. 0.1이나 1 ng/ml의 경우는 배양 시간에 따른 생산량은 다른 두 가지의 농도와 같이 배양시간 96시간까지는 증가하였으나, 배양 시간 120시간에서는 감소하였다. 소 난관 상피 세포의 체외 배양시 IL-4 첨가에 의한 배양액내의 E2의 생산은 0.001, 0.01 ng/ml 첨가시는 P4의 경우와 같이 배양 시간 72시간까지 배양 시간에 따라 생산량이 증가하여 유의적인 차이를 나타내었으며(P<0.05), 0.1 및 1 ng/ml의 경우는 배양 시간 96시간까지 증가하는 경향을 보였다. 그러나 배양 시간 120 시간에는 IL-4의 첨가 농도에 관계없이 배양 시간 24시간째의 생산량과 유사한 경향을 나타냈다. 소 난관 상피 세포의 체외 배양시 IL-4 첨가에 의한 배양액 내 TGF-$\beta$의 생산은 IL-4의 첨가 농도 및 배양 시간에 대하여 차이를 나타내지 않았으며, 유의성도 나타나지 않았다. 배양 초기에 비하여 배양시간 120시간에는 약간 생산이 낮아지는 것으로 나타나 IL-4에 의한 TGF-$\beta$의 생산은 배양 시간 96이후에는 활성이 저하하는 것으로 나타났다. 이상의 결과로 소 난관 상피 세포의 체외 배양시 IL-4 첨가는 P4 및 E2의 생산에 영향을 미치는 것으로 나타났으며, TGF-$\beta$의 생산에는 영향을 미치지 않는 것으로 나타나, IL-4는 소의 임신의 성립에 중요한 역할을 하며, 난관 상피 세포 이외의 자성 생식 기도 내에 있어서 IL-4와 관련된 기전에 대하여 더 많은 연구가 요구된다.

Keywords

References

  1. Abu Nasar MD, Rahman A, Snibson JK, Lee CS and Meeusen ENT. 2004. Effects of implantation and early pregnancy on the expression of cytokines and vascular surface molecules in the sheep endometrium. J. Reprod. Immun., 64:45-58 https://doi.org/10.1016/j.jri.2004.08.008
  2. Broeck W van den, D'haeseleer M, Coryn M and Simoens P. 2002. Cell-specific distribution of progesterone receptors in the bovine ovary. Reprod. Dom. Anim., 37:164-170 https://doi.org/10.1046/j.1439-0531.2002.00357.x
  3. Bulmer JN. 1996. Cellular constituents of human endometrium in the menstrual cycle and early pregnancy. In Bronson RA Alexander NJ Anderson D et al. (eds.), Reproductive Immunology. Blackwell Science, Cambridge, pp. 212-239
  4. Dimitriadis E, Stoikos C, Stafford-Bell M, Clark I, Paiva P, Kovacs G and Salamonsen L. 2006. Interleukin-11, IL-11 receptor $\alpha$ and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window. J. Reprod. Immunol., 69:53-64 https://doi.org/10.1016/j.jri.2005.07.004
  5. Duffy DM and Stouffer RL. 1995. Progesterone receptor messenger ribonucleic acid in the primate corpus luteum during the menstrual cycle : possible regulation by progesterone. Endocrinol., 136:1869-1876 https://doi.org/10.1210/en.136.5.1869
  6. Ellis SA. 1994. MHC studies in domestic animals. European J. Immunogenetics, 21:209-215 https://doi.org/10.1111/j.1744-313X.1994.tb00194.x
  7. Fox A, Lee CS, Brandon MR and Meeusen EN. 1998. Effects of pregnancy on lymphocytes within sheep uterine interplacentomal epithelium. Am. J. Reprod. Immunol., 40:295-302 https://doi.org/10.1111/j.1600-0897.1998.tb00421.x
  8. Fujita K, Nakayama T, Takabatake K, Higuchi T, Fujita J, Maeda M, Fujiwara H and Mori T. 1998. Administration of thymocytes derived from nonpregnant mice induces an endometrial receptive stage and leukemia inhibitory factor expression in the uterus. Hum. Reprod., 13:2888-2894 https://doi.org/10.1093/humrep/13.10.2888
  9. Giudice LC. 1999. Potential biochemical markers of uterine receptivity. Hum. Reprod., 14:3-6
  10. Gogolin-Ewens KJ, Lee CJ, Mercer WR and Brandon MR. 1989. Site-directed differences in the immune response to the. fetus. Immunology, 66: 312-317
  11. Hashi K, Fujiwara H, Yoshioka S, Kataoka N, Yamada S, Hirano T, Mori T, Fujii S and Maeda M. 1998. Peripheral blood mononuclear cells stimulate progesterone production by luteal cells derived from pregnant and non-pregnant women: possible involvement of interleukin-4 and interleukin-10 in corpus luteum function and differentiation. Hum. Reprod., 13:2738-2744 https://doi.org/10.1093/humrep/13.10.2738
  12. Keams M and Lala PK. 1983. Life history of decidual cells: a review. Am. J. Reprod. Immunol. Microbial., 3:78-82 https://doi.org/10.1111/j.1600-0897.1983.tb00219.x
  13. Leung ST, Derecka K, Mann GE, Flint APF and Wathes DC. 2000. Uterine lymphocytes distribution and interleukin expression during early pregnancy in cows. J. Reprod. Fertil., 119:25- 33 https://doi.org/10.1530/reprod/119.1.25
  14. Makkar G, Ng EH, Yeung WS and Ho PC. 2006. Reduced expression of interleukin-11 and interleukin-6 in the preimplantation endometrium of excessive ovarian responders during in vitro fertilization treatment. J. Clin. Endocrinol. Metab., 91:3181-3188 https://doi.org/10.1210/jc.2006-0180
  15. Nasu K, Sun B, Nishida M, Fukuda J, Narahara H and Miyakawa I. 2004. Cultures human endometrial epithelial cells produce thymus and activated-regulated chemokine with stimulation or interleukin-4 and interleukin-13. Fertil. Steril., 82 (suppl.) 3:1014-1018 https://doi.org/10.1016/j.fertnstert.2004.04.029
  16. Navot D, Bergh PA and Williams M. 1991. An insight into early reproductive processes through the in vivo model of ovum donation. J. Clin. Endocrinol. Metab., 72:408-412 https://doi.org/10.1210/jcem-72-2-408
  17. Nakayama T, Goto Y, Kanzaki H, Takabatake K, Himeno T, Noda Y and Mori T. 1995. The use of intra-endometrial embryo transfer for increasing the pregnancy rate. Hum. Reprod., 10: 1833-1836 https://doi.org/10.1093/oxfordjournals.humrep.a136186
  18. Psychoyos A. 1973. Hormonal control of ovoimplantation. Vitam. Horm., 31 :201-256 https://doi.org/10.1016/S0083-6729(08)60999-1
  19. Rice A and Chard T. 1998. Cytokine in implantation. Cytokine Growth Factor Rev., 9:287-296 https://doi.org/10.1016/S1359-6101(98)00020-3
  20. Sharkey AM and Smith SK. 2003. The endometrium as a cause of implantation failure. Best. Pract. Res. Clin. Obstet. Gynaecol., 17:2891-2807
  21. Wathes DC and Wooding FBP. 1980. An electron microscopic study of implantation in the cow. American J. Anatomy, 159:285-306 https://doi.org/10.1002/aja.1001590305
  22. Wegmann TG, Lin H, Guilbert L and Mosmann TR. 1993. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a Th2 phenomenon? Immunology Today, 14:353-356 https://doi.org/10.1016/0167-5699(93)90235-D
  23. Yamanouchi K, Matsuyama S, Nishihara M, Shiota K, Tachi C and Takahashi M. 1992. Splenic macrophages enhance prolactin-induced progestin secretion from mature rat granulosa cells in vitro. Biol. Reprod., 46:1109-1113 https://doi.org/10.1095/biolreprod46.6.1109