The Change of Compositions and Antioxidant Effect in Soybean Cultivars Pickled in Persimmon Vinegar

콩 품종별 감식초 절임 중 성분의 변화와 항산화 효과

  • 방효필 (공주대학교 식품공학과) ;
  • 최원균 (㈜넥서스테크노로지 연구개발부) ;
  • 조규성 (한경대학교 식품생물공학과) ;
  • 손종연 (한경대학교 식품생물공학과) ;
  • 류기형 (공주대학교 식품공학과)
  • Published : 2006.12.31

Abstract

Changes of component(amino acid, free sugar, fatty acid and mineral) and antioxidant effect by pickling of soybeans we.e investigated. Soybean cultivars, Daewon, Pungsannamul, Hwaeum(yellow bean), Ilpum Black and Zynuni(black bean) were soaked in persimmon vinegar for 10 days at $20^{\circ}C$. The major amino acids of raw soybeans were glutamic acid, aspartic acid, lysine and leucine. The content of total amino acid decreased by pickling. The major free sugar of raw soybeans were glucose, fructose and sucrose. Sucrose decreased and glucose and fructose increased by pickling. Maltose was found only in pickled Daewon and Ilpum Black. Linoleic and linolenic acid content of raw soybeans were $49.3%{\sim}57.1%\;and\;7.8{\sim}8.9%$, and the fatty acid contents did not change by pickling. The major mineral elements were K, P and Mg, and their compositions except for Na did not change by pickling. Total phenolic compound, vitamin $B_1$ and C content increased during pickling. The antioxidant effects, electron donating abilities, nitrite-scavenging abilities increased by pickling.

여러 가지 종 품종에 감식초를 처리하여 성분의 변화와 항산화 효과에 대하여 살펴본 결과는 다음과 같다. 아미노산 함량은 글루타민산이 가장 많았고, 이어서 아스파르트산, 라이신, 로이신, 알기닌 순이었다. 주요 유리당은 glucose, fructose 및 sucrose이었으며, 초절임에 의해 sucrose의 함량이 크게 감소하였고, glucose와 fructose의 함량은 증가하였다. Maltose는 초절임한 대원과 일품검정에서만 발견되었다. 품종별 원료 콩의 리놀레인산의 함량은 $49.3{\sim}57.1%$의 범위였으며 리놀레닌산 함량은 각각 $7.8{\sim}8.9%$의 범위였으며 초절임에 따른 큰 변화는 보이지 않았다. 품종별 원료 콩과 초절임한 콩의 품종별 무기질의 조성은 칼륨, 인, 마그네슘이 많았고 이어서 칼슘과 나트륨, 철분이었고, 초절임에 따른 큰 변화는 보이지 않았다. 비타민 $B_1$과 C의 함량 그리고 총 페놀 함량은 초절임 후에 증가하였다. 초절임에 의해 전자 공여능, 항산화 효과, 아질산염 소거능은 모두 증가하였다.

Keywords

References

  1. Morishige, K, Matsumoto, K, Ohmichi, M, Nishio, Y, Adachi, K, Hayakawa, J, Nukui, K, Tasaka, K, Kurachi, H and Murata, Y. Clinical features affecting the results of estrogen replacement therapy on bone density in Japanese postmenopausal women. Gynecol. Obstet Invest. 52(4):223-226. 2001 https://doi.org/10.1159/000052979
  2. Han, BJ. Screening of biomaterials for the control of intestinal mocroflora and evaluation of Akebia, Pomegranate and Chicory. Bok-jin Han. Hanyang Univercity, Seoul, Korea. 1-122. 1995
  3. Kudou, S, Shimoyamada, M, Imura, T, Uchida, T and Okubo, KA. new isoflavone glycoside in soybean Seeds(Glycine max Merrill). glycitein $7-O-{\beta}-D-(6'-O-acetyl)-glucopyranoside$. Agric. Biol. Chem. 55:859-861. 1991 https://doi.org/10.1271/bbb1961.55.859
  4. Kudou, S, Fleury, Y, Welti, D, Magnolato, D, Uchida, T and Kitamura, K. Malonyl isoflavone glycosides in soybean seeds(Glycine max Merrill). Agric. Biol. Chem. 55(9):2227-2233. 1991 https://doi.org/10.1271/bbb1961.55.2227
  5. Choi, GS, Lim, SY and Choi, JS. Antioxidant and nitrile scavenging effect of soybean, meju and doenjang. Korean J. Life Sci. 8: 473-478. 1998
  6. Yoon, KD, Kwon, DJ, Hong, SS, Kim, SI and Chung, KS. Inhibitory soybean and fermented soybean products on the chemically induced mutagenesis. Kor. J. Appl. Microbial Biotechnol. 24:525-528. 1996
  7. Nam, SH. Hanguk Nonghwahak Hoechi(J. Korean Agric. Chem. Soc.) 34(2), 134-141. 1991
  8. Lee, OH. Analysis of food components and physiological activities of olive leaf active compounds. Department of Food Science and Technology Graduate School of Chungbuk National University Cheongju, Korea(2005)
  9. Brenes, M, Hidalgo, FJ, Garcia, A, Rios, JJ, Garcia, P, Zamora, R. and Garrido, A. Pinorecinol and l-acetoxypinorecinol, two new phenolic compounds identified in olive oil. J. Am. Oil Chem. Soc. 77:715-720(2000) https://doi.org/10.1007/s11746-000-0115-4
  10. Farag, RS, El-Baroty, GS and Basuny, AM. Safety evaluation of olive phenolic compounds as natural antioxidants. Int. J. Food Sci. Nutr. 54: 159-174. 2003
  11. Bianco, A and Uccella, N. Biophenolic components of olives. Food Research International 33(2):475-485. 2000 https://doi.org/10.1016/S0963-9969(00)00072-7
  12. Kang, YH, Park, YK and Lee, GD. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J. Food Sci. Technol. 28(2):232-239. 1996
  13. Teresa-Satue, M, Huang, SW and Frankel, EN. Effect of natural antioxidants in virgin olive oil on oxidative stability of refined, bleached and deodorized oilve oil. J. Am. Oil Chem. Soc., 72(4):1131-1137. 1995 https://doi.org/10.1007/BF02540978
  14. Blois, MS. Antioxidant determinations by the use of stable free radical. Nature 181:1199-1200. 1958 https://doi.org/10.1038/1811199a0
  15. A.O.A.C. Official methods of analysis. 15th ed. Association of official analytical chemists. Washington, D.C. Cd 8-35. 1990
  16. Economou, KD, Oreopouou, V and Thomopoulos, CD Antioxidant activity of some plant extracts of the family labiate. J. Am. Oil Chem. Soc. 68:109- 113. 1991 https://doi.org/10.1007/BF02662329
  17. Gray, JI and Dugan, JLR. Inhibition of N-nitrosamine formation in model food system. J. Food Sci. 40(4):981-985. 1975 https://doi.org/10.1111/j.1365-2621.1975.tb02248.x