DOI QR코드

DOI QR Code

Evaluation of Bacterial Transport Models for Saturated Column Experiments

  • Ham, Young-Ju (Environmental Biocolloid Engineering Laboratory, Program in Rural System Engineering, Seoul National University) ;
  • Kim, Song-Bae (Environmental Biocolloid Engineering Laboratory, Program in Rural System Engineering, Seoul National University) ;
  • Kim, Min-Kyu (Environmental Biocolloid Engineering Laboratory, Program in Rural System Engineering, Seoul National University) ;
  • Park, Seong-Jik (Environmental Biocolloid Engineering Laboratory, Program in Rural System Engineering, Seoul National University)
  • 발행 : 2006.12.30

초록

Bacterial transport models were evaluated in this study to determine the suitable model at describing bacterial transport in saturated column experiments. Four models used in the evaluation were: advective-dispersive equation (ADE) + equilibrium sorption/retardation (ER) + kinetic reversible sorption (KR) (Model I), ADE + two-site sorption (Model 2), ADE + ER + kinetic irreversible sorption (KI) (Model 3), ADE + KR + KI (Model 4). Firstly, analyses were performed with the first experimental data, showing that Model 4 is appropriate for describing bacterial transport. Even if Model 1 and 2 fit well to the observed data, they have a defect of not including the irreversible sorption, which is directly related to mass loss of bacteria. Model 3 can not properly describe the tailing observed in the data. However, further analysis with the second data indicates that Model 4 can not describe retardation of bacteria, even if the sorption-related parameters are varied. Therefore, Model 4 is modified by incorporating retardation factor into the model, resulting in the improved fitting to the data. It indicates that the transport model, into which retardation, kinetic reversible sorption, and kinetic irreversible sorption are incorporated, is suitable at describing bacterial transport in saturated column experiments. It is expected that the selected transport model could be applied to properly analyze the bacterial transport in saturated porous media.

키워드

참고문헌

  1. Carnesano, T. A., Unice, K. M., and Logan, B. E., 1999. Blocking and ripening of colloids in porous media and their implications for bacterial transport, Colloid Surf. A 160: 291-308 https://doi.org/10.1016/S0927-7757(99)00156-9
  2. Fontes, D. E., Mills, A. L., Hornberger, G. M., and Herman, J. S., 1991. Physical and factors influencing transport of microorganisms through porous media, App. Environ. Microbiol. 57: 2473-2481
  3. Gannon, J. T.. Manila!, V. B., and Alexander, M., 1991. Relationship between cell surface properties and transport of bacteria through soil, App. Environ. Microbiol. 57: 190-193
  4. Gross, M. J. and Logan, B. E., 1995. Influence of different chemical treatment on transport of Alcaligenes paradoxus in porous media, App. Environ. Microbiol. 61: 1750-1756
  5. Harvey, R. W. and Garabedian, S. P., 1991. Use of col1oid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer, Environ. Sci. Technol. 25: 178-185 https://doi.org/10.1021/es00013a021
  6. Hendry, M. J., Lawrence, J. R, and Maloszewski, P., 1997. The role of sorption in the transport of Klebsiella oxytoca through saturated silica sand, Ground Water 35: 574-584
  7. Hendry, M. J., Lawrence, J. R., and Maloszewski, P., 1999. Effects of velocity on the transport of two bacteria through saturated sand, Ground Water 37: 103-112 https://doi.org/10.1111/j.1745-6584.1999.tb00963.x
  8. Hornberger, G. M, Mil1s, A. L., and Herman, J. S., 1992. Bacterial transport in porous media: Evaluation of a model using laboratory observations, Water Resour. Res. 28: 915-938 https://doi.org/10.1029/91WR02980
  9. Kinoshita, T., Bales, R. C., Yahya, M. T., and Gerba, C. P., 1993. Bacteria transport in a porous medium: Retention of Bacillus and Pseudomonas on silica surfaces, Water Res. 27: 1295-1301 https://doi.org/10.1016/0043-1354(93)90216-5
  10. Lahlou, M., Harms, H., Springael, D., and Ortega-Calve, J. J., 2000. Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media, Environ. Sci. Technol. 34: 3649-3656 https://doi.org/10.1021/es000021t
  11. Lindqvist, R. and Bengtsson, G., 1991. Dispersal dynamics of groundwater bacteria, Microb. Ecol. 21: 49-72 https://doi.org/10.1007/BF02539144
  12. Li, Q. and Logan, B. E., 1999. Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants, Water Res. 33: 1090-1100 https://doi.org/10.1016/S0043-1354(98)00291-7
  13. McCaulou, D. R., Bales, R C., and McCarthy, J. F., 1994. Use of short-pulse experiments to study bacteria transport through porous media, J. Contam. Hydrol. 15: 1-14 https://doi.org/10.1016/0169-7722(94)90007-8
  14. McEldowney, S. and Fletcher, M., 1986. Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata, App. Environ. Microbiol. 52: 460-465
  15. Mills, A. L., Herman, J. S., Hornberger, G. M., and DeJesus, T. H., 1994. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand, App. Environ. Microbiol. 60: 3300-3306
  16. Riinaarts, H. H. M., Norde, W., Bouwer, E. J., Lyklerna, J., and Zehnder, A. J. B., 1995. Reversibility and mechanism of bacterial adhesion, Colloid Surf. B 4: 5-22 https://doi.org/10.1016/0927-7765(94)01146-V
  17. Rijnaarts, H. H. M., Norde, W., Bouwer, E. J., Lyklema, J., and Zehnder, A. J. B., 1996. Bacterial deposition in porous media related to the clean bed collision efficiency and to substratum blocking by attached cells, Environ. Sci. Technol. 30: 2869-2876 https://doi.org/10.1021/es960597b
  18. Schafer, A., Ustohal, P., Harms, H., Stauffer, F., Dracos, T., and Zehnder, A. J. B., 1998. Transport of bacteria in unsaturated porous media, J. Contam. Hydrol. 33: 149-169 https://doi.org/10.1016/S0169-7722(98)00069-2
  19. Sturman, P. J., Stewart, P. S., Cunningham, A. B., Bouwer, E. J., and Wolfram, J. H., 1995. Engineering scale-up of in situ bioremediation processes: A review, J. Contam. Hydrol. 19: 171-203
  20. Tan, Y., Gannon, J. T., Baveye, P., and Alexander, M., 1994. Transport of bacteria in an aquifer sand: Experiments and model simulations, Water Resour. Res. 30: 3243-3252 https://doi.org/10.1029/94WR02032