Phosphate Adsorption of Kaolinite KGa-1b (Source Clay)

카올리나이트 KGa-1b(표준 점토)의 인산염 흡착 특성

  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Johnston Cliff T. (Department of Agronomy, Purdue University) ;
  • Gnanasiri S. Premachandra G.S. (Department of Agronomy, Purdue University)
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • ;
  • Published : 2006.12.31

Abstract

The characteristics of phosphate adsorption on kaolinite was studied by batch adsorption experiments. The phosphorous contents was measured using UV spectrometer with 820 nm wavelength. The experiment with changing reaction time revealed that fast P adsorption occurred within $0{\sim}12$ hour, whereas slow adsorption reaction began after 12 hour. The adsorption percentage depended on kaolinite amount in phosphate solution. Rotary-shaker enhanced the adsorption percentage up to $11{\sim}15%$. The phosphorous adsorption appears to be insensitive to change in the ionic strength of KCl between 0.01 M and 0.1 M. From this result, we can conclude that phosphate was adsorbed on kaolinite as inner-sphere complexes. However, the ionic strength increased to 1.0 M, adsorption decreased. It suggests that phosphate may be adsorbed as outer-sphere complexes. Phosphate adsorption decreased with increasing pH value, but it is not distinct. The adsorption isotherms were well fitted with the Langmuir equation.

카올리나이트 KGa-1b (표준 점토)의 인산염 흡착 특성을 규명하기 위하여 벳치(batch) 흡착 실험을 실시하였다. 인의 함량은 UV 분광분석기를 시용하여 측정하였으며, 이 때 파장은 820 nm를 이용하였다. 반응 시간을 달리하면서 실험한 결과 카올리나이트의 인산염 흡착 반응 중 매우 빠른 반응은 $0{\sim}12$시간 사이에서 발생하며, 12시간 이후에는 천천히 일어나는 반응이 일어나는 것으로 판단된다. 인산염 용액과 반응하는 카올리나이트의 양이 0.25 g에서 0.50 g을 거쳐 1.0 g으로 증가함에 따라 흡착률은 대체로 증가하는 경향을 보인다. 회전하는 교반기를 사용하였을 경우, 회전하지 않는 교반기를 사용할 때에 비하여 흡착률이 약 $11{\sim}15%$ 정도 증가하였다. 배경전해질 KCl의 농도가 $0.01M{\sim}0.1M$ 사이에서는 농도 변화가 흡착에 거의 영향을 미치지 못하는 것으로 보아, 인산염은 내부권 복합체로 존재하는 것으로 판단된다. 그러나 농도가 1.0 M로 증가할 때 흡착량이 감소하는데, 이것은 외부권 복합체로도 존재 가능함을 시사하고 있다. pH가 증가하면 대체적으로 인산염의 흡착량은 감소하는 경향을 나타내고 있으며, 카올리나이트 KGa-1b를 이용한 인산염 흡착은 랑미어 흡착등온선에 더욱 잘 부합하는 경향을 보여주고 있다.

Keywords

References

  1. 황진연, 장명익, 김준식, 조원모, 안병석, 강수원 (2000) 우리나라 황토(풍화토)의 구성광물 및 화학성분. 한국광물학회지, 13, 147-163
  2. Arai, Y. and Sparks, D.L. (2001) ATR_FTIR spectroscopic investigation on phosphate adsorption mechanism at the ferrihydrite-water interface. J. Colloid Interface Sci., 241, 317-326 https://doi.org/10.1006/jcis.2001.7773
  3. Bhatti, J.S., Comerford, N.B. and Johnston, C.T. (1998) Influence of oxalate and soil organic matter on sorption and desorption of phosphate onto a Spodic horizon. Soil Sci. Soc. Am. J., 62, 1089-1095 https://doi.org/10.2136/sssaj1998.03615995006200040033x
  4. Bleam, W.E., Pfeffer, R.E., Goldberg, S., Taylor, R.W. and Dudley, R. (1991) A $^{31}P$ solid-state nuclear magnetic resonance study of phosphate adsorption at the boehmite/aqueous solution. Langmuir, 7, 1702-1712 https://doi.org/10.1021/la00056a023
  5. Borden, D. and Giese, R.F. (2001) Baseline studies of the clay minerals society source clays: Cation exchange capacity measurements by the ammonia-electrode method. Clays Clay Miner., 49, 444-445 https://doi.org/10.1346/CCMN.2001.0490510
  6. Boyd, S.A., Sheng, G., Teppen, B.J. and Johnston, C.F. (2001) Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environ. Sci. Technol., 35, 4227-4234 https://doi.org/10.1021/es010663w
  7. Chen, Y.-S. R., Butler, J.N. and Stumm, W. (1973) Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions. J. Colloid Interf. Sci., 43, 421-436 https://doi.org/10.1016/0021-9797(73)90388-3
  8. Chipera, S.J. and Bish, D.L. (2001) Baseline studies of the clay minerals society source clays: Powder x-ray diffraction anaylses. Clays Clay Miner., 49, 398-409 https://doi.org/10.1346/CCMN.2001.0490507
  9. Davis, J.A. and Kent, D.B. (1990) Surface Complexation Modeling in Aqueous Geochemistry. In: Mineral-Water Interface Geochemistry, Reviews in Mineralogy 23, 177-260
  10. Eaton, A.D., Clesceri, L.S., Rice, E.W. and Greenberg, A.E. (Eds) (2005) Standard Methods for the Examination of Water and Wastewater (21st Ed). 4-159
  11. Edzwald, J.K., Toensing, D.C. and Leung, M.C. (1976) Phosphate adsorption reactions with clay minerals. Environ. Sci. Tech., 10, 485-490 https://doi.org/10.1021/es60116a001
  12. Holford, L.C.R., Hird, C. and Lawrie, R. (1997) Effects of animal effluents on the phosphorus sorption characteristics of soils. Aust. J. Soil Res., 35, 365-373 https://doi.org/10.1071/S96048
  13. Ioannou, A, Dimirkou, A and Theodoropoulou, E. (1996) Phosphate sorption by hematite and kaolinite-hematite (k-h) system as described by isotherms. Commun. Soil Sci. Plant Anal., 27, 1925-1947 https://doi.org/10.1080/00103629609369678
  14. Ioannou, A., Dimirkou, A. and Papadopoulos, P. (1998) Phosphate sorption by goethite and kaolinite-goethite system as described by isotherms. Commun. Soil Sci. Plant Anal., 29, 2175-2190 https://doi.org/10.1080/00103629809370101
  15. Kim, Y. (2000) A study of phosphate adsorption on kaolinite by $^{31}p$ NMR spectroscopy. J. Miner. Soc. Korea, 13, 186-195
  16. Liu, H.F. and Liptak, B.E. (ed) (2000) Groundwater and Surface Water Pollution. CRC Press LLC, 52-62
  17. Liu, M., Hou, L., Xu, S., Ou, D., Yang, Y., Zhang, B. and Liu, Q. (2002) Adsorption of phosphate on tidal flat surface sediments from the Yangtze Estuary. Environ. Geol., 42, 657-665 https://doi.org/10.1007/s00254-002-0574-3
  18. Luengo, C., Brigante, M., Antelo, J. and Avena, M. (2006) Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. J. Colloid Interf. Sci., 300, 511-518 https://doi.org/10.1016/j.jcis.2006.04.015
  19. McBride, M.B. (1997) A critique of diffuse double layer models applied to colloid and surface chemistry. Clays Clay Miner., 45, 598-608 https://doi.org/10.1346/CCMN.1997.0450412
  20. Mermut, A.R. and Cano, A.F. (2001) Baseline studies of the clay minerals society source clays: Chemical analyses of major elements. Clays Clay Miner., 49, 381-386 https://doi.org/10.1346/CCMN.2001.0490504
  21. Muljadi, D., Posner, A.M. and Quirk, J.P. (1966) The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. J. Soil Sci., 17, 238-247 https://doi.org/10.1111/j.1365-2389.1966.tb01469.x
  22. Persson, P., Nilsson, N. and Sjoberg, S. (1996) Structure and bonding of orthophosphate ions at the iron oxide-aqueous interfaces. J. Colloid Interf. Sci., 177, 263-275 https://doi.org/10.1006/jcis.1996.0030
  23. Pissarides, A., Stewart, J.W. and Rennie, D.A. (1968) Influence of cation saturation on phosphorous adsorption by selected clay minerals. Can. J. Soil Sci., 48, 151-157 https://doi.org/10.4141/cjss68-018
  24. Portielje, R. and Lijklema, L. (1993) Sorption of phosphate by sediments as as result of enhanced external loading. Hydrobiologia, 253, 249-261 https://doi.org/10.1007/BF00050746
  25. Rao, N.S. and Prasad, P.R. (1997) Phosphate pollution in the groundwater of lower Vamsadhara river basin, India. Environ. Geol., 31, 117-122 https://doi.org/10.1007/s002540050170
  26. Sei, J., Jumas, J.C., Olivier-Fourcade, J., Quiquampoix, H. and Staunton, S. (2002) Role of iron oxides in the phosphate adsorption properties of kaolinites from the Ivory coast. Clays Clay Miner., 50, 217-222 https://doi.org/10.1346/000986002760832810
  27. Shang, C., Stewart, J.W.B. and Huang, P.M. (1992) pH effect on kinetics of adsorption of organic and inorganic phosphates by short-range ordered aluminium and iron precipitates. Geoderma, 53, 1-14 https://doi.org/10.1016/0016-7061(92)90017-2
  28. Sparks, D.L. (2003) Environmental Soil Chemistry. Academic Press, 352p
  29. Sui, Y. and Thompson, M.L. (2000) Phosphorus sorption, desorption, and buffering capacity in a Biosolids-Amended Mollisol. Soil Sci. Soc. Am. J., 64, 164-169 https://doi.org/10.2136/sssaj2000.641164x
  30. Tejedor-Tejedor, M.I. and Anderson, M.A. (1989) Protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir, 6, 602-611 https://doi.org/10.1021/la00093a015
  31. Zhou, M. and Li, Y. (2001) Phosphorus-sorption characteristics of calcareous soils and limestone from the Southern Everglades and adjacent farmlands. Soil Sci. Soc. Am. J., 65, 1404-1412 https://doi.org/10.2136/sssaj2001.6551404x