Preparation of Polyethersulfone Ultrafiltration Membranes Containing $ZrO_2$ Nanoparticles by Combining Phase-inversion Method/Sol-gel Technique

상변환/졸-겔법에 의한 $ZrO_2$ 나노입자 함유 Polyethersulfone 한외여과 막의 제조

  • Youm, Kyung-Ho (School of Chemical Engineering, College of Engineering, Chungbuk National University) ;
  • Lee, Yun-Jae (School of Chemical Engineering, College of Engineering, Chungbuk National University)
  • 염경호 (충북대학교 공과대학 화학공학부) ;
  • 이윤재 (충북대학교 공과대학 화학공학부)
  • Published : 2006.12.31

Abstract

The asymmetric hybrid membranes of polyethersulfone (PES) and $ZrO_2$ nanoparticles were prepared via new one-step procedure combining simultaneously the phase-inversion method and the sol-gel technique. The optimum contents of $Zr(PrO)_4\;and\;HNO_3$ catalyst were determined by the adsorption experiments of phosphate anion onto the resulting hybrid membranes. The maximum adsorption of phosphate anion is obtained at the conditions of 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES and 30 mL $HNO_3$ addition per 1 mL $Zr(PrO)_4$. Variation of morphology, performance and incorporated $ZrO_2$ amount of the resulting hybrid membranes were discussed and determined using SEM, pure water flux, TGA, ICP, XRD and contact angle measurements. Increasing $Zr(PrO)_4$ addition into casting solution, pure water flux is increased and $ZrO_2$ amount in the hybrid membrane is maximized at the conditions 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES. The prephosphatation of PES-$ZrO_2$ hybrid membrane was studied to modify the surface characteristics of membrane. Ultrafiltration of bovine serum albumin (BSA) solution was performed in a dead-end cell using both a bare (non-phosphated) and a phosphated hybrid membrane. It is revealed that both the permeate flux and BSA rejection were increased as about 40% by prephosphatation of hybrid membrane. These results may be explained on the basis of the increase of membrane hydrophilicity, which was determined from contact angle measurements.

상변환과 졸-겔 반응을 동시에 행하는 새로운 제막법으로 나노크기의 $ZrO_2$ 입자가 함유된 비대칭형 PES-$ZrO_2$ 복합 막을 제조하였다. PES-$ZrO_2$ 복합 막 제조의 최적 제막 조건을 복합 막에의 인 흡착실험을 수행하여 인 흡착량이 최대가 되는 조건으로서 결정하였는바, 최적 제막 조건은 캐스팅 용액에 1 mL의 PES 당 0.15 mL의 $Zr(PrO)_4$ 첨가 및 비용매 1 L에 1 mL $Zr(PrO)_4$ 당 30 mL의 $HNO_3$ 촉매를 첨가했을 때 이었다. 복합 막의 단면 구조, 막성능 및 $ZrO_2$ 입자 함유량 변화를 SEM, 순수투과량, TGA, ICP, XRD 및 접촉각 측정을 통해 결정하였는바, 캐스팅 용액에의 $Zr(PrO)_4$ 첨가량이 증가할수록 순수 투과량이 증가하며, $ZrO_2$ 입자 함유량은 1 mL의 PES 당 0.15 mL의 $Zr(PrO)_4$ 첨가했을 때 최대가 되었다. 복합 막의 표면 특성을 친수성으로 개선하기 위하여 인산처리를 하였으며, 인산처리 전후(前後)의 두 종류 PES-$ZrO_2$ 복합 막을 대상으로 한 BSA 용액의 dead-end 한외여과 실험을 수행하여 막오염 형성의 억제 정도를 평가한 결과 인산처리 시킨 복합 막의 경우 투과량과 BSA 배제도 모두 약 40% 정도 증가하였는데 이는 복합 막을 인산처리 시킴으로서 막특성이 친수화 되었기 때문이다.

Keywords

References

  1. H. Strathmann and K. Koch, 'The Formation Mechanism of Phase Inversion Membrane', Desalination, 21, 241 (1977) https://doi.org/10.1016/S0011-9164(00)88244-2
  2. 김민정, 이상덕, 염경호, '상변환 Polyethersulfone 한외여과막 제조시 무기염 첨가 효과', 멤브레인, 12(2), 75 (2002)
  3. A. J. Reuvers and C. A. Smolders, 'Formation of Membranes by Means of Immersion Precipitation. Part II. The Mechanism of Formation of Membranes Prepared from the System Cellulose Acetate-Acetone-Water', J. Memb. Sci., 34, 67 (1987) https://doi.org/10.1016/S0376-7388(00)80021-6
  4. N. M. Wara, L. F. Francis, and B. V. Velamakanni, 'Addition of Alumina to Cellulose Acetate Membranes', J. Memb. Sci., 104, 43 (1995) https://doi.org/10.1016/0376-7388(95)00010-A
  5. W. Doyen, W. Adriansens, B. Moienberghs, and Leysen, R., 'A Comparison between Polysulfone, Zirconia and Organo-Mineral Membranes for Use in U Ultrafiltration', J. Memb. Sci., 113, 247 (1996) https://doi.org/10.1016/0376-7388(95)00124-7
  6. L. Genne, S. Kuypers, and R. Leysen, 'Effect of the Addition of $ZrO_2$ to Polysulfone based UF Membranes', J. Memb. Sci., 113, 343 (1996) https://doi.org/10.1016/0376-7388(95)00132-8
  7. S. P. Nunes, J. Schultz, and K. V. Peinemann, 'Silicone Membranes with Silica Nanoparticles', J. Mat. Sci., 15, 1139 (1996)
  8. S. P. Nunes, K. Peinemann, K. Ohlrogge, A. Alpers, M. A. Keller, and T. N. Pires, 'Membranes of Poly(ether imide) and Nanodispersed Silica', J. Memb. Sci., 157, 219 (1999) https://doi.org/10.1016/S0376-7388(98)00379-2
  9. C. Joly, S. Goizet, J. C. Schrotter, J. Sanchez, and M. Escoubes, 'Sol-Gel Polyimide-Silica Composite Membrane: Gas Transport Properties', J. Memb. Sci., 130, 63 (1997) https://doi.org/10.1016/S0376-7388(97)00008-2
  10. P. Ubirajara, Rodrigues-Filho, G. Yoshitaka, Maria do Carmo Goncalves, and C. C. Ricardo, 'Composite Membranes of Cellulose Acetate and Zirconium Dioxide: Preparation and Study of Physicochemical Characteristics', Chem. Mater., 8, 1375 (1996) https://doi.org/10.1021/cm950528g
  11. J. Randon, P. Blanc, and R. Paterson, 'Modification of Ceramic Membrane Surfaces using Phosphoric Acid and Alkyl Phosphonic Acids and Its Effects on Ultrafiltration of BSA Protein', J. Memb. Sci., 98, 119 (1995) https://doi.org/10.1016/0376-7388(94)00183-Y
  12. B. Putman, P. V. Meeren, and D. Thierens, 'Reduced Bovine Serum Albumin Adsorption by Prephosphatation of Powdered Zirconium Oxide', Coll. Surf. A, 121, 81 (1997) https://doi.org/10.1016/S0927-7757(96)03978-7
  13. A. H. F Mary, 'Standard Methods-For the Examination of Water and Wastewater', American Public Health Association, 15th Ed., pp. 420 (1977)
  14. A. W. Adamson, 'Physical Chemistry of Surfaces', Wiley, New York, 4th Ed., pp. 21 (1982)
  15. M. M. Bradford, 'A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding', Analytical Biochem, 72, 248 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  16. S. Wu, 'Polymer Interface and Adhesion', Marcel Dekker, New York, pp. 27 (1982)
  17. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969) https://doi.org/10.1002/app.1969.070130815
  18. A. Stevenson and A. M. Priest, Rubber Chem. Technol., 64, 545 (1991) https://doi.org/10.5254/1.3538572