Preparation and Characterization of the $H_3PO_4$-doped Sulfonated Poly(aryl ether benzimidazole) Membrane for Polymer Electrolyte Membrane Fuel Cell

고분자전해질 연료전지용 인산 도핑 술폰화 폴리아릴에테르벤즈이미다졸 고분자전해질 막의 제조 및 특성

  • Hong, Young-Taik (Advanced Materials division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Jeong, Jin-Ju (Advanced Materials division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Yoon, Kyung-Sock (Advanced Materials division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Choi, Jun-Kyu (Advanced Materials division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Young-Jun (High Performance Organic Material Lab., Sungkyunkwan University)
  • 홍영택 (한국화학연구원 고분자나노소재연구팀) ;
  • 정진주 (한국화학연구원 고분자나노소재연구팀) ;
  • 윤경석 (한국화학연구원 고분자나노소재연구팀) ;
  • 최준규 (한국화학연구원 고분자나노소재연구팀) ;
  • 김영준 (성균관대학교 고성능유기재료연구실)
  • Published : 2006.12.31

Abstract

Acid-doped sulfonated poly(aryl ether benzimidazole) (S-PAEBI) copolymers were synthesized by a direct polymerization technique and a doping with phosphoric acid as a dopant, and the polymer electrolyte membranes were fabricated from them by a solution casting method. To optimize the reaction condition, the degree of sulfonation and doping level were varied in the ranges of $0{\sim}60%\;and\;0.7{\sim}5.7$, respectively. Physiochemical properties of the doped membranes were investigated by AFM, TGA and the measurement of proton conductivity. It was found that proton conductivities depend on doping levels of membranes. Conductivity determined at the condition of $130^{\circ}C$ and no humidity was $7.3{\times}10^{-2}S/cm$ for the $H_3PO_4$-doped PAEBI membrane with a doping level of 5.7.

술폰화 폴리아릴에테르벤즈이미다졸 공중합체를 $K_2CO_3$를 이용한 직접중합법으로 합성하고 인산도핑을 하여 고온운전 연료전지용 고분자전해질 막을 제조하였다. 최적의 전해질 막 제조를 위하여 술폰화도 $0{\sim}60%$ 및 도핑을 $0.7{\sim}5.7$의 범위에서 다양한 조성의 전해질 막 제조실험이 수행되었으며, 원자현미경분석 및 열중량분석, 수소 이온 전도도측정 등을 통해 전해질 막의 기본특성들을 평가하였다. 수소 이온 전도도는 도핑율에 따라 증가하는 것으로 나타났으며, $130^{\circ}C$의 비 가습환경에서 측정된 수소 이온 전도도는 도핑을 5.7의 전해질 막에서 최대 $7.3{\times}10^{-2}S/cm$의 값을 나타내었다.

Keywords

References

  1. J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata, 'Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells', Solid State Ionics, 147, 189 (2002) https://doi.org/10.1016/S0167-2738(02)00011-5
  2. M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, 'Development and performance characterization of new electrocatalysts for PEMFC', Journal of Power Sources, 106 (1-2), 206 (2002) https://doi.org/10.1016/S0378-7753(01)01031-X
  3. 이영무, 박호범, '직접 메탄올 연료전지용 고분자전해질 분리막 소재의 개발', 한국막학회지:멤브레인, 10(3), 103 (2000)
  4. S. Gottesfeld and T. A. Zawodzinski, 'In advances in dlectrochemical science and engineering', R. C. Alkire, H. Gerischer, D. M. Kolb, C. W. Tobias, Eds., 5, pp. 195, Wiley-VCH, Weinheim, Germany (1997)
  5. J. Kerres, W. Cui, and S. Reichle, 'New sulfonated engineering polymers via the Metalation, Route. 1.: Sulfonated Poly(ethersu1fone) PSU Udel via Metalation-Sulfination-Oxidation', Journal of Polymer Science: Part A Polymer Chemistry, l(34), 2421 (1996)
  6. M.-H. Chen, T.-C. Chiao, and T-W. Tseng, 'Preparation of sulfonated polysulfone/ polysulfone and aminated polysulfone/polysulfone blend membranes', Journal of Applied Polymer Science, 61, 1205 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1205::AID-APP16>3.0.CO;2-W
  7. Jochen Kerres, Wei Cui, and Ralf Disson, Wolfgang Neubrand, 'Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes by disproportionation of sulfinic acid groups', Journal of Membrane Science, 139, 211 (1998) https://doi.org/10.1016/S0376-7388(97)00253-6
  8. C. Hasiotis, V. Deimede, and C. Kontoyannis, 'New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole', Electrochimica Acta, 46, 2401 (2001) https://doi.org/10.1016/S0013-4686(01)00437-6
  9. F. Lufrano, G. Squadrito, A. Patti, and E. Passalacqua, 'Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells', Journal of Applied Polymer Science, 77, 1250 (2000) https://doi.org/10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
  10. M. Rikukawa and K. Sanui, 'Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers', Prog. Polym. Sci., 25, 1463 (2000) https://doi.org/10.1016/S0079-6700(00)00032-0
  11. Takeshi Kobayashi, Masahiro Rikukawa, Kohei Sanui, and Naoya Ogata, 'Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene)', Solid State Ionics, 106, 219 (1998) https://doi.org/10.1016/S0167-2738(97)00512-2
  12. C. Geniesa, R. Merciera, B. Silliona, N. Cornetb, G. Gebelb, and M. Pineric, 'Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes', Polymer, 42, 359 (2001) https://doi.org/10.1016/S0032-3861(00)00384-0
  13. K. D. Kreuer, 'On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells', Journal of Membrane Science, 185, 29 (2001) https://doi.org/10.1016/S0376-7388(00)00632-3
  14. Deborah J. Jones and Jacques Roziere, 'Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications', Journal of Membrane Science, 185, 41 (2001) https://doi.org/10.1016/S0376-7388(00)00633-5
  15. 남상용, 박병길, 공성호, 김영진, '직접메탄올 연료전지용 유무기 하이브리드 전해질 - 술폰화된 SEBS (SSEBS)-clay 하이브리드 막의 제조 및 물성', 한국막학회지:멤브레인, 15(2), 165 (2005)
  16. 유민철, 장봉준, 김정훈, 이수복, 이용택, '연료전지를 위한 술폰화된 perfluorocyclobutyl biphenylene 고분자 전해질막', 한국막학회지:멤브레인, 15(4), 355 (2005)
  17. 김정훈, 신정필, 박인준, 이수복, 서동학, '직접 메탄올 연료전지를 위한 술폰화 폴리스티렌/테플론 복합막 제조 및 특성연구', 한국막학회지:멤브레인, 14(2), 173 (2004)
  18. G. Inzelt, M. Pineri, J. W. Schultze, and M. A. Vorotyntsev, 'Electron and proton conducting polymers: recent developments and prospects', Electrochimica Acta, 45, 2403 (2000) https://doi.org/10.1016/S0013-4686(00)00329-7
  19. 이영무, 이선용, '설폰산기를 함유한 PVA막의 직접 메탄올 연료전지 응용', 한국막학회지:멤브레인, 14(3), 240 (2004)
  20. Jochen A. Kerres, 'Development of ionomer membranes for fuel cells', Journal of Membrane Science, 185, 3 (2001) https://doi.org/10.1016/S0376-7388(00)00631-1
  21. W. L. Harrion, M. A. Hickner, Y. S. Kim, and J. E. McGrath, 'Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building block: synthesis, characterization, and performance - A topical review', Fuel Cells, 5, 201 (2005) https://doi.org/10.1002/fuce.200400084
  22. J. J. Fontanella, M. C. Wintersgill, J. S. Wainright, R. F. Savinell, and M. Litt, 'High pressure electrical conductivity studies of acid doped polybenzimidazole', Electrochimica Acta, 43, 1289 (1998) https://doi.org/10.1016/S0013-4686(97)10032-9
  23. J. S. Wainright, J-T. Wang, D. Weng, R. F. Savinell, and M. Litt, 'Acid-doped polybenzimidazoles: A new polymer electolyte', J. electrochem. Soc., 142, L121 (1995) https://doi.org/10.1149/1.2044337
  24. Qingfeng Li, Ronghuan He, Ji-An Gao, Jens Oluf Jensen, and Niels. J. Bjerrum, 'The CO poisoning effect in PEMFCs operational at temperatures up to $200^{\circ}C$', Journal of the Electrochemical Society, 150(12), A1599 (2003) https://doi.org/10.1149/1.1619984
  25. M. Sankir, V. A. Bhanu, W. L. Harrison, H. Ghassemi, K. B. Wiles, T. E. Glass, A. E. Brink, M. H. Brink, and J. E. McGrath, 'Synthesis and characterization of 3,3'-disulfonated-4,4'-dichlorodi-phenyl sulfone (SDCDPS) monomer for proton exchange membranes (PEM) in fuel cell applications', J. of Applied Polymer Science, 100, 4595 (2006) https://doi.org/10.1002/app.22803
  26. P. M. Hergenrother, J. G. Smith Jr, and J. W. Connell, 'Synthesis and properties of poly(arylene ether benzimidazole)s', Polymer, 34, 856 (1993) https://doi.org/10.1016/0032-3861(93)90374-J
  27. Lixiang Xiao, Haifeng Zhang, Eugene Scanlon, L. S. Ramanathan, Eui-Won Choe, Diana Rogers, Tom Apple, and Brian C. Benicewicz, 'High-temperature polybenzimidazole fuel cell membranes via a sol-gel process', Chem. Mater., 17, 5328 (2005) https://doi.org/10.1021/cm050831+
  28. 임지원, 천세원, 전지현, 남상용, '폴리비닐알콜을 이용한 직접메탄을 연료전지용 이온교환막 제조에 관한 연구', 한국막학회지:멤브레인, 13(3), 191 (2003)
  29. William L. Harrison, Feng Wang, Jeffery B. Mecham, Vinayak A. Bhanu, Elinda Hill, Yu Seung Kim, and James E. McGrath, 'Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I', J. of Polymer Science: Part A: Polymer Chemistry, 41, 2264 (2003) https://doi.org/10.1002/pola.10755
  30. Xavier Glipa, Mustapha El Haddad, Deborah J. Jones, and Jacques Roziere, 'Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer', Solid State Ionics, 97, 323 (1997) https://doi.org/10.1016/S0167-2738(97)00032-5
  31. Y.-L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, 'Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells', Journal of The Electrochemical Society, 151(1), A8 (2004) https://doi.org/10.1149/1.1630037
  32. Qingfeng Li, Ronghuan He, Jens Oluf Jensen, and Niels J. Bjerrum, 'Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100^{\circ}C$', Chem. Mater., 15, 4896 (2003) https://doi.org/10.1021/cm0310519
  33. B. Smitha, S. Sridhar, and A. A. Khan, 'Solid polymer electrolyte membranes for fuel cell applications - a review', Journal of Membrane Science, 259, 10 (2005) https://doi.org/10.1016/j.memsci.2005.01.035