Critical Breakthrough Pressure through Porous Polymer Membrane

다공성 고분자 분리막의 임계투과압력

  • Lee, Yong-Taek (Department of Chemical Engineering, Chungnam National University) ;
  • Jeon, Hyun-Soo (Department of Chemical Engineering, Chungnam National University) ;
  • Ahn, Hyo-Seong (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Young-Jin (Department of Chemical Engineering, Chungnam National University) ;
  • Song, In-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Hyung-Keun (Korea Institute of Energy Research)
  • Published : 2006.12.31

Abstract

The critical breakthrough pressure through both porous PVDF (polyvinylidenefluoride) and PTFE (poly-tetrafluoroethylene) was measured using pure water, $0.1M{\sim}4.0M$ NaOH aqueous solutions and $0.1M{\sim}3.0M\;NaHSO_3$ aqueous solutions. The critical breakthrough pressure through PTFE was observed to be higher than that through PVDF membrane at the same pore size. The critical breakthrough pressure decreased as the molar concentration of NaOH increased up to 1.0 M reaching the minimum and then increased further after 1.0 M NaOH up to 4.0 M NaOH. On the other hand, the critical breakthrough pressure measured using $NaHSO_3$ aqueous solutions was decreased with increasing the concentration of $NaHSO_3$. The critical breakthrough pressure could be well interpreted with Cantor's equation.

다공성 폴리비닐리덴플루오라이드(PVDF, polyvinylidenefluoride) 그리고 폴리테트라플루오르에틸렌(PTFE, Polytetrafluoroethylene)에 대하여 순수한 물, $0.1M{\sim}4.0M$ NaOH 수용액, 그리고 $0.1M{\sim}3.0M\;NaHSO_3$ 수용액을 사용하여 임계투과압력을 측정하였다. 임계투과압력은 동일한 평균 기공 크기의 PVDF보다 PTFE가 크게 나타남을 관찰할 수 있었다. NaOH 수용액의 경우 NaOH의 농도 증가에 따라 임계투과압력은 감소하였으며 1.0 M 농도에서 최소값을 나타낸 후 다시 증가함을 확인하였다. 그러나 NaOH이 아닌 다른 염을 용해한 수용액인 $NaHSO_3$ 수용액의 경우 농도를 3.0 M까지 증가하여도 임계투과압력이 계속 감소함을 알 수 있었다. 이와 같은 현상을 이론적인 Cantor식으로 해석할 수 있었다.

Keywords

References

  1. 조영환, 김희택, 류경옥, 이영수, 'Water-hydrated Ca-based sorbent의 이산화황 제거에 관한 연구', 화학공학의 이론과 응용, 3(2), 2597 (1997)
  2. 이철수 외 20명, '접촉막 소재제조 및 응용공정 기술 확보를 위한 중장기 전략수립', 산업자원부, 고려대학교 (2002)
  3. 윤인주, 정진기, 이후인, '다공성 분리막의 기공 크기 측정 기술 개발', 과학기술처, 한국자원연구소 (1994)
  4. S. B. Rho, W. Ahn, and M. A. Lim, 'Estimation of critical surface tension and adsorption characteristics of aqueous solution on PMMA powder by measuring contact angle', Polymer, 21, 1 (1997)
  5. C. J. van Oss, 'Interfacial force in aqueous media', 89, pp. 89-101 Marcel Dekker, New York (1994)
  6. R. D. Noble and S. A. Stern, 'Membrane separations technology: principles and applications', pp. 467 - 483, Elsevier Science B.V., Amsterdam, The Netherlands (1995)
  7. P. H. M. Feron and A. E. Jansen, '$CO_2$ separation with polyolefin membrane contactors and dedicated absorptions liquids: performances and prospects', Sep. Pur. Tech., 27, 231 (2002) https://doi.org/10.1016/S1383-5866(01)00207-6
  8. H. Kreulen, C. A. Smolders, G. F. Versteeg, and W. P. M. van Swaaij, 'Determination of mass transfer rates in wetted and non-wetted microporous membranes', Chem. Eng. Sci., 48, 2093 (1993) https://doi.org/10.1016/0009-2509(93)80084-4
  9. V. Y. Dindore, D. W. F. Brilman, F. H. Geuzebroek, and G. F. Versteeg, 'Membrane-solvent selection for $CO_2$ removal using membrane gas-liquid contactors', Sep. Pur. Tech., 40, 133 (2004) https://doi.org/10.1016/j.seppur.2004.01.014
  10. 이영진, 송인호, 전현수, 안효성, 이용택, 이형근, '평판형 분리막 접촉기를 이용한 이산화황 흡수 분리', 멤브레인, 16(4), 196 (2006)
  11. M. Mulder, 'Basic principles of membrane technology', pp. 168-169, Kluwer Academic Publishers, Dordrecht, The Netherlands (1996)
  12. C. M. Chan, 'Polymer surface modification and characterization', Hanser, Munchen, Germany (1993)
  13. A. W. Neumann and Jan K. Spelt, 'Applied surface thermodynamics', Marcel Dekker, New York (1996)
  14. N. K. Adam, 'The chemical structure of solid surfaces as deduced from contact angles', American Chem. Soc., 43, 52 (1964)
  15. R. E. Collins and C. E. Cooke, 'Fundamental basis for the contact angle and capillary pressure', Trans Faraday Soc., 55, 1602 (1959) https://doi.org/10.1039/tf9595501602
  16. Y. Lee, J. Jeong, I. J. Youn and W. H. Lee, 'Modified liquid displacement method for determination of pore size distribution in porous membranes', 130, J. Membr. Sci., 149 (1997) https://doi.org/10.1016/S0376-7388(97)00017-3
  17. D. R. Karsa, 'Industrial applications of surfactants', The Royal Soc. of Chemistry, London (1987)
  18. 김종득, '계면현상론', pp. 82-95, 아르케 (1999)
  19. 이까다 요시도, '표면의 과학', pp. 114-119, 겸지사 (1996)
  20. http://www.surfchem.co.kr/tech/tech.html, September 06 (2006)
  21. H. S. Joo, D. H. Lim, Y. J. Park, and H. J. Kim, 'Relationship of PSA performance and contact angle', Adhesion and Interface J., 6, 1 (2005)