음식물 쓰레기 분해에 대한 고온성 미생물의 영향

Effect of Thermophilic Bacteria on Degradation of Food Wastes

  • 이외수 (경북대학교 미생물학과) ;
  • 정지현 (경북대학교 생물건강.농업생명인재양성누리사업단) ;
  • 박유미 (경북대학교 미생물학과) ;
  • 설경조 (경북대학교 미생물학과) ;
  • 김사열 (경북대학교 미생물학과)
  • Yi, Hwe-Su (Department of Microbiology, Kyungpook National University) ;
  • Jeong, Ji-Hyung (Agro-Biotechnology Education Center, NURI, Kyungpook National University) ;
  • Park, Yu-Mi (Department of Microbiology, Kyungpook National University) ;
  • Seul, Keyung-Jo (Department of Microbiology, Kyungpook National University) ;
  • Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University)
  • 발행 : 2006.12.28

초록

Food wastes were decomposed into the Mugri (Isung Engineering, Korea), a food waste reduction machine, with adding sawdust of cryptomeria. Degradation effects were better when the machine worked at over 45$^{\circ}C$ than those at the lower temperature. Thermophilic bacteria were isolated from cryptomeria sawdust and the food waste products degraded by the machine. The isolates from cryptomeria sawdust were classified into 3 genera (Acinetobacter baumannii, Enterobacter sp. and Erwinia cypripedii) and almost all the isolates from the degraded products were partially identified as Bacillus sp. by 16S rDNA sequence analysis. The isolated thermophilic bacteria showed degradative enzyme activities. In the case of addition of the 30 thermophilic bacteria into the machine, degradation rate of food wastes was almost twice as high with increasing process temperature up to 6$^{\circ}C$.

키워드

참고문헌

  1. Suh, M. G., S. B. Lee, K. E. Lee, and S. H. Lee. 2001. A study on reduction of food waste. Kor. J. Env. Hlth. Soc. 27: 14-19
  2. Alya, S. K., H. Anissa, E. H. A. Nedra, G. F. Basma, K. Safia, and N. Moncef. 2006. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 161: 1-8 https://doi.org/10.1016/j.micres.2005.04.003
  3. Lapygina, E. V., L. V. Lysak, and D. G. Zvyagintsev. 2002. Tolerance of soil bacterial complexes to salt shock. Microbiology 71: 143-147 https://doi.org/10.1023/A:1015181717601
  4. Ugwuanyi, J. O., L. M. Harvey, and B. McNeil. 2005. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresour. Technol. 96: 707-719 https://doi.org/10.1016/j.biortech.2004.06.027
  5. Choi, E.-H., S.-E. Lee, K. S. Yoon, D.-K. Kwon, J.-K. Shon, S.-H. Park, M.-S. Han and S.-Y. Ghim. 2003. Isolation of nitrogen-fixing bacteria from gramineous crops and measurements of nitrogenase activity. Kor. J. Microbiol. Biotechnol. 31: 18-24
  6. Min, S. G., J. H. Kim, T. W. Kim, and K. N. Kim. 2003. Isolation and Identification of protease producing bacteria in kimchi. Kor. J. Food Sci. Technol. 35: 666-670
  7. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  8. Kurosawa, K., T. Hosaka, N. Tamehiro, T. Inaoka, and K. Ochi. 2006. Improvement of ${\alpha}$ -amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168. Appl. Environ. Microbiol. 72: 71-77 https://doi.org/10.1128/AEM.72.1.71-77.2006
  9. Shin, H. S., and J. H. Youn. 2005. Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16: 33-44 https://doi.org/10.1007/s10531-004-0377-9
  10. Haruta, S., T. Nakayama, K. Nakamura, H. Hemmi, M. Ishii, Y. Igarashi, and T. Nishino. 2005. Microbial Diversity in Biodegradation and Reutilization Processes of Garbage. J. Biosci. Bioeng. 99: 1-11 https://doi.org/10.1263/jbb.99.1
  11. Smith, R.E. 1977. Rapid tube test for detecting fungal cellulase production. Appl. Environ. Microbiol. 33: 980-981
  12. Vuong, C., F. Gotz, and M. Otto. 2000. Construction and Characterization of an agr Deletion Mutant of Staphylococcus epidermidis. Infect. Immun. 68: 1048-1053 https://doi.org/10.1128/IAI.68.3.1048-1053.2000
  13. Alford, J. A., D. A. Pierce, and F. G. Suggs. 1964. Activity of microbial lipases on natural fats and synthetic triglycerides. J. Lipid Res. 5: 390-394
  14. Yamada, Y. and Y. Kawase. 2006. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption. Waste Managemen. 26: 49-61 https://doi.org/10.1016/j.wasman.2005.03.012
  15. Choi, W. S. and D. H. Bai. 2003. Isolation and production of amylase from soil microorganism. J. New Mater. Technol. 12: 6575
  16. Yun, Y. S., J. I. Park, M. S. Suh, and J. M. Park. 2000. Treatment of food wastes using slurry-phase decomposition. Bioresour. Technol. 73: 21-27 https://doi.org/10.1016/S0960-8524(99)00131-5
  17. Park, C. H., T. H. Kim, S. Y. Kim, J. W. Lee, and S. W. Kim. 2003. Bioremediation of 2,4,6-Trinitrotoluene contaminated soil in slurry and column reactors. J. Biosci. Bioeng. 96: 429-433
  18. Gonzales, H. B., K. Takyu, H. Sakashita, Y. Nakano, W. Nishijima, and M. Okada. 2005. Biological solubilization and mineralization as novel approach for the pretreatment of food waste. Chemosphere 58: 57-63 https://doi.org/10.1016/j.chemosphere.2004.08.092
  19. Kwon, S. H., J. A. Kwon, D. H. Lee, and T. D. Kim. 2001. The effect of pH readjustment on the treatment efficiency of food waste in fed-batch composting process. J. Kor. Solid Wastes Eng. Soc. 18: 218-227
  20. Kwon, S. H., D. H. Lee, and T. D. Kim. 2001. Evaluation of food waste compostingprocess controlled the compost pH using the condensate properties. J. Kor. Solid Wastes Eng. Soc. 18: 372-380