Effective Family Shuffling Method Using Complementary DNA Fragments Produced by S1 Nuclease

  • Hong, Soon-Gyu (Genetic Resources Center, Korea Institute of Bioscience and Biotechnology)
  • Published : 2006.12.30

Abstract

An efficient method for the in vitro reassembly of homologous DNA sequences is presented. The proposed method involves obtaining single strands of homologous genes and hybridizing them to obtain partially hybridized heteroduplex DNA; cleaving the single-stranded regions of the heteroduplex DNA using S1 nuclease to generate double-strand DNA fragments; denaturing the double-strand DNA fragments to generate single-strand DNA fragments; conducting a series of polymerase chain reactions (PCR) using the single-strand DNA fragments as internal primers and a mixture of homologous DNA as templates to obtain elongated reassembled DNA; and finally, amplifying the reassembled DNA by a PCR using terminal primers. As a result, DNA reassembly could be achieved between homologous genes with a sequence similarity as low as 78%.

Keywords

References

  1. Crameri, A., S. A. Raillard, E. Bermudez, and W. P. C. Stemmer. 1998. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288-291 https://doi.org/10.1038/34663
  2. Gibbs, M. D., K. M. Nevalainen, and P. L. Bergquist. 2001. Degenerate oligonucleotide gene shuffling (DOGS): A method for enhancing the frequency of recombination with family shuffling. Gene 271: 13-20 https://doi.org/10.1016/S0378-1119(01)00506-6
  3. Kikuchi, M., K. Ohnishi, and S. Harayama. 1999. Novel family shuffling methods for the in vitro evolution of enzymes. Gene 236: 159-167 https://doi.org/10.1016/S0378-1119(99)00240-1
  4. Kim, K. Y., B. S. Koo, D. H. Jo, and S. I. Kim. 2004. Cloning, expression, and purification of exoinulinase from Bacillus sp. Snu-7. J. Microbiol. Biotechnol. 14: 344-349
  5. Kim, J.-N., M.-J. Seo, E.-A. Cho, S.-J. Lee, S.-B. Kim, C.-I. Cheigh, and Y.-R. Pyun. 2005. Screening and characterization of an esterase from a metagenomic library. J. Microbiol. Biotechnol. 15: 1067-1072
  6. Kim, Y. W., S. S. Lee, R. A. Warren, and S. G. Withers. 2004. Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire. J. Biol. Chem. 279: 42787-42793 https://doi.org/10.1074/jbc.M406890200
  7. May, O., P. T. Nguyen, and F. H. Arnold. 2000. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of $_L$-methionine. Nat. Biotechnol. 18: 317-320 https://doi.org/10.1038/73773
  8. Ostermeier, M., J. H. Shim, and S. J. Benkovic. 1999. A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17: 1205-1209 https://doi.org/10.1038/70754
  9. Schmidt-Dannert, C. and F. H. Arnold. 1999. Directed evolution of industrial enzymes. Trends Biotechnol. 17: 135-136 https://doi.org/10.1016/S0167-7799(98)01283-9
  10. Shao, Z., H. Zhao, L. Giver, and F. H. Arnold. 1998. Random-priming in vitro recombination: An effective tool for directed evolution. Nucl. Acids Res. 26: 681-683 https://doi.org/10.1093/nar/26.2.681
  11. Stemmer, W. P. C. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389-391 https://doi.org/10.1038/370389a0
  12. Wintrode, P. L., K. Miyazaki, and F. H. Arnold. 2000. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution. J. Biol. Chem. 275: 31635-31640 https://doi.org/10.1074/jbc.M004503200
  13. Yaya, R., A. Suwanto, M. T. Suhartono, J. K. Hwang, Y. R. Pyun, S. Rahayu, and F. Tanuwidjaja. 2004. Study of thermostable chitinase enzymes from Indonesian Bacillus K29-14. J. Microbiol. Biotechnol. 14: 647-652
  14. Yeo, J. J., H. K. Kim, J. H. F. Kim, S. H. Park, T. K. Oh, and J. K. Lee. 2005. A direct approach for finding functional lipolytic enzymes from the Paenibacillus polymyxa genome. J. Microbiol. Biotechnol. 15: 155-160
  15. Zhao, H., L. Giver, Z. Shao, J. A. Affholter, and F. H. Arnold. 1998. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16: 258-261 https://doi.org/10.1038/nbt0398-258