Enhancement of Sensitivity in Interferometric Biosensing by Using a New Biolinker and Prebinding Antibody

  • Park, Jae-Sook (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lim, Sung-Hyun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Sim, Sang-Jun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Chae, Hee-Yeop (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Yoon, Hyun-C. (Department of Biotechnology, Ajou University) ;
  • Yang, Sang-Sik (School of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Byung-Woo (Department of Chemical Engineering, Sungkyunkwan University)
  • Published : 2006.12.30

Abstract

Recombinant E. coli ACV 1003 (recA:: lacZ) was used to measure low concentrations of DNA-damaging chemicals, which produce $\beta$-galactosidase via an SOS regulon system. Very low $\beta$-galactosidase activities of less than 0.01 unit/ml, $\beta$-galactosidase produced through an SOS response corresponding to the 10 ng/ml (ppb) of DNA damaging chemicals in the environment, can be rapidly determined by using an alternative interferometric biosensor with optically flat thin films of porous silicon rather than by the conventional time-consuming Miller's enzyme assay as well as the ELISA method. fu order to enhance the sensitivity in the interferometry, it needs to obtain more uniform distribution and higher biolinking efficiency, whereas interferometric sensing is rapid, cheap, and advantageous in high throughput by using a multiple-well-type chip. In this study, pore size adjusted to 60 nm for the target enzyme $\beta$-galactosidase to be bound on both walls of a Si pore and a calyx crown derivative was apllied as a more efficient biolinker. Furthermore, anti-$\beta$-galactosidase was previously functionalized with the biolinker for the target $\beta$-galactosidase to be specifically bound. When anti-$\beta$-galactosidase was bound to the calyx-crown derivative-linked surface, the effective optical thickness was found to be three times as high as that obtained without using anti-$\beta$-galactosidase. The resolution obtained was very similar to that afforded by the time-consuming ELISA method; however, the reproducibility was still unsatisfactory, below 1 unit $\beta$-galactosidase/ml, owing to the microscopic non-uniform distribution of the pores in the etched silicon surface.

Keywords

References

  1. Walker, G. C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in E. coli. Microbiol. Rev. 48: 60-93
  2. Heitman, J. and P. Model. 1991. SOS induction as an in vivo assay of enzyme-DNA interactions. Gene 103: 1-9 https://doi.org/10.1016/0378-1119(91)90383-M
  3. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, N.Y
  4. Ziauddin, M. and D. M. Sabatini. 2001. Microarrays of cells expressing defined cDNAs. Nature 411: 107-110 https://doi.org/10.1038/35075114
  5. Sandres, G. H. S. and A. Manz. 2000. Chip-based microsystems for genomic and proteomic analysis. Trends Anal. Chem. 19: 364-378 https://doi.org/10.1016/S0165-9936(00)00011-X
  6. Kim, S. Y., B. Y. Kwak, Y. Y. Shim, and D. H. Shon. 2004. Detection of chitooligosaccharides in Korean soybean paste by tandem immunoaffinity-ELISA. J. Microbiol. Biotechnol. 14: 256-261
  7. Kwak, B. Y., B. J. Kwon, C. H. Kweon, and D. H. Shon. 2004. Detection of Aspergillus, Penicillium, and Fusarium species by sandwich enzyme-linked immunosorbent assay using mixed monoclonal antibodies. J. Microbiol. Biotechnol. 14: 385-389
  8. Janshoff, A., K. P. S. Dancil, C. Steinem, D. P. Greiner, V. S. Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor, and M. R. Ghardiri. 1998. Macroporous p-type silicon Fabryfringe layers. Fabrication, characterization, and application in biosensing. J. Am. Chem. Soc. 120: 12108-12116 https://doi.org/10.1021/ja9826237
  9. Lee, Y., E. K. Lee, Y. W. Cho, T. Matsui, I. C. Kang, T. S. Kim, and M. H. Han. 2003. ProteoChip: A highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein-protein interaction studies. Proteomics 3: 1-16 https://doi.org/10.1002/pmic.200390016
  10. Lim, S.-H. and B.-W. Kim. 2004. Application of an interferometric biosensor chip to biomonitoring an endocrine disruptor. Biotechnol. Bioproc. Eng. 9: 118-126 https://doi.org/10.1007/BF02932994
  11. Drolet, M., P. Phoenix, R. Menael, E. Masse, L. F. Liu, and R. J. Crouch. 1995. Overexpression of RNAase H partially complements the growth defect of an E. coli ${\Delta}topA$ mutant. Proc. Natl. Acad. Sci. USA 92: 3267-3630
  12. Kenyon, C. J. and G. C. Walker. 1980. DNA-damaging agents stimulate gene expression at specific loci in E. coli. Proc. Natl. Acad. Sci. USA 77: 2819-2823
  13. Krueger, J. H., S. J. Elledge, and G. Walker. 1983. Isolation and characterization of Tn5 insertion mutations in the lexA gene of E. coli. J. Bacteriol. 153: 1368-1378
  14. Watanabe, E., H. Eun, K. Baba, T. Arao, Y. Ishii, S. Endo, and M. Ueji. 2004. Rapid and simple screening analysis for residual imidacloprid in agricultural products with commercially available ELISA. Anal. Chem. Acta 521: 45- 51 https://doi.org/10.1016/j.aca.2004.05.056
  15. Ouyang, W., J. Xue, J. Liu, W. Jia, Z. Li, X. Xie, X. Liu, J. Jian, Q. Li, Y. Zhu, A. Yang, and B. Jin. 2004. Establishment of an ELISA system for determining soluble LAIR-1 levels in sera of patients with HFRS and kidney transplant. J. Immunol. Methods 292: 109-117 https://doi.org/10.1016/j.jim.2004.06.005
  16. Cha, J. M. and B. W. Kim. 2002. Bioassay of environmental endocrine disruptors TBT and DMSO using recombinant E. coli. Bioproc. Biosyst. Eng. 24: 405-410 https://doi.org/10.1007/s004490100269
  17. Lin, Victor S.-Y. and K. Motesharei, K. 1997. A porous silicon-based optical interferometric biosensor. Science 278: 840-843 https://doi.org/10.1126/science.278.5339.840
  18. Dancil, K. P. S., D. P. Greiner, and M. J. Sailor. 1999. A porous silicon optical biosensor: Detection of reversible binding of IgG to a protein A-modified surface. J. Am. Chem. Soc. 121: 7925-7930 https://doi.org/10.1021/ja991421n
  19. Gao, J., Y. Y. Li, and M. J. Sailor. 2002. Vapor sensors based on optical interferometry from oxidized microporous silicon films. Langmuir 18: 2229-2233 https://doi.org/10.1021/la015568f
  20. Sohn, H., S. Letant, M. J. Sailor, and W. C. Trogler. 2000. Detection of fluorophosphonate chemical warfare agents by catalytic hydrolysis with a porous silicon interferometer. J. Am. Chem. Soc. 122: 5399-5400 https://doi.org/10.1021/ja0006200
  21. Lillis, B. et al. 2005. Microporous silicon and biosensor development: Structural analysis, electrical characterisation and biocapacity evaluation. Biosens. Bioelect. 21: 282-292 https://doi.org/10.1016/j.bios.2004.09.031
  22. Mathew, F. P and E. C. Alocilja. 2005. Porous silicon-based biosensor for pathogen detection. Biosens. Bioelect. 20: 1656-1661 https://doi.org/10.1016/j.bios.2004.08.006
  23. Rotiroti, L. et al. 2005. Optical microsensors for pesticides identification based on porous silicon technology. Biosens. Bioelect. 20: 2136-2139 https://doi.org/10.1016/j.bios.2004.09.020
  24. Bessueille, F., V. Dugas, V. Vikulov, J. P. Cloarec, E. Souteyrand, and J. R. Martin. 2005. Assessment of porous silicon substrate for well-characterized sensitive DNA chip implement. Biosens. Bioelect. 21: 908-916 https://doi.org/10.1016/j.bios.2005.02.007
  25. Protein Data Bank, http://www.rcsb.org/pdb
  26. Waltenburg, H. N. and S. T. Yates. 1995. Surface chemistry of silicon. Chem. Rev. 95: 1589-1673 https://doi.org/10.1021/cr00037a600
  27. Pavlovic, E., A. P. Quist, U. Geliusm, and S. Oscarsson. 2002. Surface functionalization of silicon oxide at room temperature and atmospheric pressure. J. Colloid Interf. Sci. 254: 200-203 https://doi.org/10.1006/jcis.2002.8565
  28. Schwartz, D. K. 2001. Mechanism and kinetics of selfassembled monolayer formation. Annu. Rev. Phys. Chem. 52: 107-137 https://doi.org/10.1146/annurev.physchem.52.1.107