Anti-oxidant Activities and Anti-inflammatory Effects on Artemisia scoparia

비쑥 추출물에 대한 항산화 활성 및 염증억제 효과

  • Yoon, Weon-Jong (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute) ;
  • Lee, Jung-A (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute) ;
  • Kim, Ji-Young (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute) ;
  • Oh, Dae-Ju (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute) ;
  • Jung, Yong-Hwan (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute) ;
  • Lee, Wook-Jae (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute) ;
  • Park, Soo-Yeong (Jeju Biodiversity Research Institute, Jeju Hi- Tech Industry Development Institute)
  • 윤원종 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 이정아 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 김지영 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 오대주 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 정용환 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 이욱재 ((재)제주하이테크산업진흥원 제주생물종다양성연구소) ;
  • 박수영 ((재)제주하이테크산업진흥원 제주생물종다양성연구소)
  • Published : 2006.12.30

Abstract

We investigated the antioxidant activities such as DPPH radical scavenging capacity, xanthine oxidase inhibitory activity, and superoxide radical scavenging capacity of the aqueous EtOH extract and its solvent fractions of Artemisia scoparia. The ethyl acetate fraction showed high antioxidant activity, compared to positive controls such as ascorbic acid, butylated hydroxy anisole (BHA), trolox, and allopurinol in these assay systems. Moreover, we examined the inhibitory effect of solvent fractions of A. scoparia on the production of pro-inflammatory factors that the nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostaglandin E2 $(PGE_2)$ production activated with LPS $(1{\mu}g/ml)$ in murine macrophage cell line RAW264.7. The amounts of protein levels were determined by immunoblottting. Tn the sequential fractions of hexane and dichloromethane inhibited the NO and $PGE_2$ production and the protein level of iNOS and COX-2. These results suggest that A. scoparia may have anti-inflammatory activity through the antioxidant activity and inhibition of pro-inflammatory factors.

Keywords

References

  1. 한국식품성분표 (1996) 90-91. 보건복지부 식품의약품 안전본부
  2. Tan, R. X., Zheng, W. F. and Tang, H. Q. (1998) Biologically active substances from the genus Artemisia. Planta Med., 64: 295-302 https://doi.org/10.1055/s-2006-957438
  3. McCord, J. M. (1974) Free radicals and inflammation: protection of synodal fluid by superoxide dismutase. Science, 185: 529-531 https://doi.org/10.1126/science.185.4150.529
  4. Willoughby, D. A. (1975) Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis., 34: 471-478 https://doi.org/10.1136/ard.34.6.471
  5. McCord, J. M, Wong, K., Stokes, S. H., Petrone, W. F. and English, D. (1980) Superoxide and inflammation: A mechanism for the anti-inflammatory activity of superoxide dismutase. Acta Physiol Scand Suppl., 492: 25-30
  6. Halliwell, B. and Gutteridga, J. M. (1984) Oxigen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219: 1-14 https://doi.org/10.1042/bj2190001
  7. Axtelle, T. and Pribble, J. (2001) IC14, a CD14 specific monoclonal antibody is a potential treatment for patients with severe sepsis. J. Endotoxin. Res., 7: 310-314 https://doi.org/10.1177/09680519010070040201
  8. Lee, E. S., Ju, H. K., Moon, T. C, Lee, E., Jahng, Y, Lee S. H, Son, J. K., Baek, S. H. and Chang, H. W. (2004) Inhibition of nitric oxide and tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$ production by propenone compound through blockade of nuclear factor (NF)-$\kappa$B activation in cultured murine macrophages. Biol. Pharm. Bull., 27: 617-620 https://doi.org/10.1248/bpb.27.617
  9. Mukaida, N., Ishikawa, Y., Ikeda, N., Fujioka, N., Watanabe, S. and Kuno, K. (1996) Novel insight into molecular mechanism of endotoxin shock; biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-kapperB and regulation of cytokine production/action through beta2 integrin in vivo. J. Leukoc. Biol., 59: 145-151 https://doi.org/10.1002/jlb.59.2.145
  10. Lazarov, S., Balutsov, M. and Ianev, E. (2000) The role of bacterial endotoxins, receptors and cytokines in the pathogenesis of septic(endotoxin) shock. Vutr. Boles., 32: 33-40
  11. Scott, M. G and Hancock, R. E. (2000) Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol., 20: 407-431
  12. Vane, J. A. (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like durgs. Nat. New. Biol., 23: 232-235
  13. Funk, C. D., Frunk, L. B., Kennedy, M. E., Pong, A. S. and Fitzgerald, G A. (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J., 5: 2304-2312 https://doi.org/10.1096/fasebj.5.9.1907252
  14. Weis, Z. A., Cicatiello, L. and Esumi, H. (1996) Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and $N^{G}$-monomethyl-L-arginine. Biochem J., 316: 209-215 https://doi.org/10.1042/bj3160209
  15. Ryu, J. H. Ahn, H. Kim, J. Y and Kim, Y. K. (2003) Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res., 17: 485-489 https://doi.org/10.1002/ptr.1180
  16. Mu, M. M., Chakravortty, D., Sugiyama, T, Koide, N., Takahashi, K., Mori, I., Yoshida, T. and Yokochi, T. (2001) The inhibitory action of quercetin on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin Res., 7: 431-438 https://doi.org/10.1177/09680519010070060601
  17. Masferrer, J., Zweifel B. S., Manning, P. T, Hauser, S. D., Leahy, K. M., Smith, W. G, Isakson. P. C. and Seibert, K. (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci., 91: 3228-3232
  18. Seibert, K., Zhang, Y, Leahy, K., Hauser, S, Masferrer, J., Perkins, W., Lee, L. and Isakson, P. (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA, 91: 12013-12017
  19. Kim, J. Y, Jung, K. S. and Jeong, H. G (2004) Suppressive effects of the kahweol and cafestol on cycloocygenase-2 expression in macrophages. FEBS Letters, 569: 321-326 https://doi.org/10.1016/j.febslet.2004.05.070
  20. Blois, M.S. (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181: 1198-1200
  21. Nishikimi, M., N.A. Roa, K. Yagi (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 46: 849-854 https://doi.org/10.1016/S0006-291X(72)80218-3
  22. Fridovich, I. (1970) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem., 245: 4053-4057
  23. Cheng, Z. J., Kuo, S. C, Chan, S. C, Ko, F. N. and Teng, C. M. (1998) Antioxidant properties of butein isolated from Dalbergia odorifera. Biochim Biophys Acta, 1392: 291-299 https://doi.org/10.1016/S0005-2760(98)00043-5
  24. Korycka-Dahl, M., Richardson, T. and Hicks, C. (1979) Superoxide Dismutase Activity in Bovine Milk Serum, J. Food Protection, 42: 867-871 https://doi.org/10.4315/0362-028X-42.11.867
  25. Santos-Gomes, P. C, Seabra, R. M., Andrade, P. B. and Fernandes-Ferreira. M. (2003) Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J. Plant Physiol., 160: 1025-1032 https://doi.org/10.1078/0176-1617-00831
  26. Tesuka, Y, Irikawa, S., Kaneko, T., Banskota, A. H., Nagaoka, T, Xiong, Q., Hase, K. and Kadota, S. (2001) Screening of Chinese herval drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J. Ethnopharmacol., 11: 209-217
  27. Hyun, E. A., Lee, H. J., Yoon, W. J., Park, S. Y, Kang, H. K., Kim, S. J. and Yoo, E. S. (2004) Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthesis in Murine Macrophage RAW 264.7. YAKHAK HOEJI, 48: 159-164