A Definition of Korean Heat Waves and Their Spatio-temporal Patterns

우리나라에 적합한 열파의 정의와 그 시.공간적 발생패턴

  • Choi, Gwang-Yong (Department of Geography, Rutgers, The State University of New Jersey, United States)
  • 최광용 (미국 럿거스 뉴저지 주립대학 지리학과)
  • Published : 2006.12.31

Abstract

This study provides a definition of heat waves, which indicate the conditions of strong sultriness in summer, appropriate to Korea and intends to clarify long term(1973-2006) averaged spatial and temporal patterns of annual frequency of heat waves with respect to their intensity. Based on examination of the Korean mortality rate changes due to increase of apparent temperature under hot and humid summer conditions, three consecutive days with at least $32.5^{\circ}C,\;35.5^{\circ}C,\;38.5^{\circ}C,\;and\;41.5^{\circ}C$ of daily maximum Heat Index are defined as the Hot Spell(HS), the Heat Wave(HW), the Strong Heat Wave(SHW), and the Extreme Heat Wave(EHW), respectively. The annual frequency of all categories of heat waves is relatively low in high-elevated regions or on islands adjacent to seas. In contrast, the maximum annual frequency of heat waves during the study period as well as annual average frequency are highest in interior, low-elevated regions along major rivers in South Korea, particularly during the Changma Break period(between late July and mid-August). There is no obvious increasing or decreasing trend in the annual total frequency of all categories of heat waves for the study period However, the maximum annual frequencies of HS days at each weather station were recorded mainly in the 1970s, while most of maximum frequency records of both the HW and the SHW at individual weather stations were observed in the 1990s. It is also revealed that when heat waves occur in South Korea high humidity as well as high temperature contributes to increasing the heat wave intensity by $4.3-9.5^{\circ}C$. These results provide a useful basis to help develop a heat wave warning system appropriate to Korea.

본 연구는 우리나라 실정에 맞는 여름철 강한 무더위인 열파(Heat Wave)를 정의하고, 각 강도별 장기간(1973-2006) 평균적인 열파 발생빈도의 시공간적 분포 특징을 밝히고자 하였다. 고온다습한 한반도 여름몬순 기후하에서 체감온도와 사망자의 관계를 분석하여, 최소 $32.5^{\circ}C$$35.5^{\circ}C,\;38.5^{\circ}C,\;41.5^{\circ}C$의 일최고 열지수(Heat Index)가 3일간 지속되었을 때를 더운기간(Hot Spell) 및 열파(Heat Wave), 강한열파(Strong Heat Wave), 매우강한열파(Extreme Heat Wave) 발생일로 정의하였다. 이를 바탕으로 모든 단계별 열파 연평균 발생빈도를 살펴보면, 해발고도가 높은 고지대나 바다에 인접한 도서지역에서는 낮게 나타나는 반면, 주요 대하천에 인접한 내륙 저지대에서는 연평균 열파 발생빈도 뿐만 아니라 연구기간중 연 최다 열파 발생일수도 장마휴지기(7월 하순-8월 초순)를 중심으로 높게 나타난다 연구기간(1973-2006) 동안 각 단계별 열파일 발생빈도에는 뚜렷한 변화가 없었으나, 더운기간 (Hot Spell)의 최고 발생빈도를 기록한 연도는 1970년대에, 열파(Heat Waves)와 강한열파(Strong Heat Wave)의 최고 발생빈도를 기록한 연도는 1990년대에 각 집중되어 나타났다. 한편, 우리나라의 열파 발생시에는 기온 이외에도 습도의 부가적인 영향이 $4.3-9.5^{\circ}C$ 정도 열파(Heat Wave)의 강도를 높이고 있음을 알 수 있다. 이러한 연구 결과들은 우리나라에 맞는 국가 열파 경보 체계를 구축하는데 기초자료로써 활용될 수 있을 것으로 생각된다.커마 세기를 구할 수 있었다. 이러한 물 흡수선량을 통한 Ir-192 선원의 검교정 방법들은 미국의학물리학회(AAPM) 보고서 TG-43에서 권고한 흡수선량 계산 알고리즘에 바로 적용할 수 있는 것으로 사료된다. 성장 억제 작용은 G0/Gl기를 지체시켜 암세포 증식을 억제하고 apoptosis에 의해 암세포를 사멸시키는 항암 활성을 나타내는 것으로 확인되었으며, 특허 AO가 AG보다 현저한 활성을 보였다. 더 나아가 아가리쿠스 $\beta$-glucan (AG)과 올리고당류 (AO)는 항암 활성을 가진 대체 의약 소재로 개발될 수 있을 것으로 기대된다.eruginosa rhlI의 경우 단일배양보다 혼합배양시 최고 약 40배, P. aeruginosa lasI의 경우 최고 약 250배 그리고 S. aureus luxS의 경우는 단일배양보다 혼합배양시 최고 약 5배 이상 mRNA 발현량이 증가하였다. 또한 세 균주의 4가지 유전자 중 P. aeruginosa의 rhlI와 lasI의 mRNA가 가장 많은 양으로 발현됨을 확인하였다.석되었다. 6. 연 강수량이 17.4% 증가해 월별 평균 강수량 변화가 가장 큰 시나리오 Al은 연 유출량이 24.6% 증가하고, 유사량과 TN, IP 부하량은 각각 60.1%, 14.4%, 27.1%증가하는 것으로 나타났으며, 이에 비하여 연 강수량 증가가 2.5%로 가장 작은 시나리오 B1의 연 유출량 변화는 -0.4% 감소하는 것으로 나타났고, 유사량과 TN, TP 부하량은 각각 14.6%, 3.0%, 7.2% 증가하는 것으로 모의되었다. 7. 강우 발생 일수 변화를 가정한 시나리오에 대한 모의 결과, 연강우일수가 약 10일 감소한 A1-1, A2-1, B1-1, B2-1의 경우, 강우 일수 감소 이전과 연 유출량 변화는 거의

Keywords

References

  1. Changnon, S.A., Kunkel, K.E., and Reinke, B.C., 1996, Impacts and responses to the 1995 heat wave: a call to action, Bulletin of the American Meteorological Society, 77(7), 1497-1506 https://doi.org/10.1175/1520-0477(1996)077<1497:IARTTH>2.0.CO;2
  2. Choi, G., Choi, J., Kim, J.W., and Seon S.W., 2002, The climatology of perceived sultriness in South Korea, Journal of the Korean Geographical Society, 37(4), 385-402
  3. Choi, G., Choi, J., and Kwon, H.J., 2005, The impact of high apparent temperature on the increase of summertime disease-related mortality in Seoul, 1991-2000, Journal of Preventive Medicine and Public Health, 38(3), 283-290
  4. Choi, G., Robinson, D.A., Choi, J., and Kwon, H.J., 2006, An impact assessment of heat waves on the summertime elderly mortality in South Korea, 1991-2000, International Journal of Biometeorology (in prep)
  5. Choi, G. and Seon S.W., 2006, Long term (1920-2006) variability of bioclimatic heat waves and their favorable synoptic conditions in South Korea, International Journal of Climatology (in prep)
  6. Diaz, J., Garcia, R., Velazquez de Castro, F., Hernandez, E., Lopez, C., and Otero, A., 2002, Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997, International Journal of Biometeorology, 46(3), 145-149 https://doi.org/10.1007/s00484-002-0129-z
  7. Heo, I.H., Choi, Y., and Kwon, W.T., 2004, The spatial and temporal distributions of NET (Net Effective Temperature) with a function of temperature, humidity, and wind speed in Korea, Journal of the Korean Geographical Society, 39(1), 13-26
  8. Hoppe, P., 1999, The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment, International Journal of Biometeorology, 43(2), 71-75 https://doi.org/10.1007/s004840050118
  9. IPCC (Intergovernmental Panel on Climate Change), 2001, Climate change 2001: impacts, adaptation and vulnerability. Cambridge University Press
  10. Jones, T.S., Liang, A.P., Kilbourne, E.M., Griffin, M.R., Patriarca, P.A., Fite Wassilak, S.G., Mullan, R.J., Herrick, R.F., Donnell, H.D. Jr., Choi, K., and Thacker, S.B., 1982, Morbidity and mortality associated with the July 1980 heat wave in St. Louis and Kansas City, MO, Journal of the American Medical Association, 247, 3327-3331 https://doi.org/10.1001/jama.247.24.3327
  11. Kalkstein, L.S. and Valimont, K.M., 1986, An evaluation of summer discomfort in the United States using a relative climatological index, Bulletin of the American Meteorological Society, 67(7), 842-848 https://doi.org/10.1175/1520-0477(1986)067<0842:AEOSDI>2.0.CO;2
  12. Kim, H.G., Min, K.D., Kim, K.E., and Lee, K.M., 1997, Summer extraordinary low temperature in Korea and its relation to the characteristics of atmospheric circulations over Northern Hemisphere. Part I: onset of the summer extraordinary low temperature and its synoptic aspects, Journal of the Korean Meteorological Society, 33(1), 138-154
  13. Lee, C.B. and Jun, S.H., 1982, A study on the climatic classification of Korea by Comfort Index, Journal of the Korean Meteorological Society, 18(1), 48-52
  14. Meehl, G.A. and Tebaldi, C., 2004, More intense, more frequent, and longer lasting heat waves in the 21st century, Science, 305, 994-997 https://doi.org/10.1126/science.1098704
  15. Nakai, S., Itoh., T., and Morimoto, T., 1999, Deaths from heat stroke in Japan: 1968-1994, International Journal of Biometeorology, 43(3), 124-127 https://doi.org/10.1007/s004840050127
  16. NOAA (National Oceanic and Atmospheric Administration), 1980, Heat Stress, Asheville, NC; NOAA/NCDC
  17. Palecki, M.A., Changnon, S.A., and Kunkel, K.E., 2001, The nature and impacts of the July 1999 heat wave in the Midwestern United States: learning from the lessons of 1995, Bulletin of the American Meteorological Society, 82(7), 1353-1367 https://doi.org/10.1175/1520-0477(2001)082<1353:TNAIOT>2.3.CO;2
  18. Park, B.I., 1996, On the anomaly patterns of summer temperature and the cool summer types over the Korean Peninsula, Journal of Geography Education, 35, 14-22
  19. Robinson, P.J., 2001, On the definition of a heat wave, Journal of Applied Meteorology, 40(4), 762-775 https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2
  20. Rothfusz, L.P., 1990, The Heat Index equation (or, more than you ever wanted to know about Heat Index), Forth Worth, Texas: NOAA, NWS, OM, Publication no SR 90-23
  21. Sartor, F., Snacken, R., Demuth, C., and Walckiers, D., 1995, Temperature, ambient ozone levels, and mortality during summer 1994 in Belgium, Environmental Research, 70(2), 105-113 https://doi.org/10.1006/enrs.1995.1054
  22. Smoyer, K.E., Rainham, G.C, and Hewko, J.N., 2000, Heat stress-related mortality in five cities in Southern Ontario: 1980-1996, International Journal of Biometeorology, 44(4), 190-197 https://doi.org/10.1007/s004840000070
  23. Smoyer-Tomic, K.E., Kuhn, R., and Hudson, A., 2003, Heat wave hazards: an overview of heat wave impacts in Canada, Natural Hazards, 28, 463-485
  24. Steadman, R.G., 1979, The assessment of sultriness Part II: effects of wind, extra radiation, and barometric pressure on apparent temperature, Journal of Applied Meteorology, 18(7), 874-885 https://doi.org/10.1175/1520-0450(1979)018<0874:TAOSPI>2.0.CO;2
  25. Thom, E.C., 1959, The Discomfort Index, Weatherwise, 12, 57-60 https://doi.org/10.1080/00431672.1959.9926960
  26. UNEP (United Nations Environmental Programme), 2004, Impacts of summer 2003 heat wave in Europe. Environment Alert Bulletin, 2, 1-3