References
- B. C. Mitchell, J. Smart, S. L. Fok, and B. J. Marsden, 'The Mechanical Testing of Nuclear Graphite,' J. Nuclear Mater., 322 126-37 (2003) https://doi.org/10.1016/S0022-3115(03)00322-2
- A. Kurumada, T. Oku, K. Harada, K. Kawamata, S. Sato, T. Hiraoka, and B. McEaney, 'Effects of Burn-Off on Thermal Shock Resistances of Nuclear Carbon Materials,' Carbon, 35 [8] 1157-65 (1997) https://doi.org/10.1016/S0008-6223(97)00088-2
- L. Xiaowei, R. Jean-Charles, and Y. Suyuan, 'Effect of Temperature on Graphite Oxidation Behavior,' Nuclear Engineering and Design, 227 273-80 (2004) https://doi.org/10.1016/j.nucengdes.2003.11.004
- T. Chunhe and G. Jie, 'Improvement in Oxidation Resistance of the Nuclear Graphite by Reaction-Coated SiC Coating,' J. Nuclear Mater., 224 103-08 (1995) https://doi.org/10.1016/0022-3115(95)00031-3
- G. B. Neighbour and P. J. Hacker, 'The Variation of Compressive Strength of AGR Moderator Graphite with Increasing Thermal Weight Loss,' Mater. Lett., 51 307-14 (2001) https://doi.org/10.1016/S0167-577X(01)00309-3
- ASTM C 1179-91
- E. L. Fuller and J. M. Okoh, 'Kinetics and Mechanism of the Reaction of Air with Nuclear Grade Graphite: IG-110,' J. Nuclear Mater., 240 241-50 (1997) https://doi.org/10.1016/S0022-3115(96)00462-X
- R. Moormann, H. K. Hinssen, and K. Kuhn, 'Oxidation Behaviour of an HTR Fuel Element Matrix Graphite in Oxygen Compared to a Standard Nuclear Graphite,' Nuclear Engineering and Design, 227 281-84 (2004) https://doi.org/10.1016/j.nucengdes.2003.11.001
Cited by
- Wear Properties of Nuclear Graphite IG-110 at Elevated Temperature vol.38, pp.5, 2014, https://doi.org/10.3795/KSME-A.2014.38.5.469