Cryopreservation of Somatic Embryos of Soapbeny (Sapindus mukorossi Gaertn.) by Vitrification

  • Kim, Hyun-Tae (Korea Research Institute of Bioscience and Biotechnology) ;
  • Yang, Byeong-Hoon (Division of Genetic Resources, Korea Forestry Research Institute) ;
  • Park, Young-Goo (Department of Forestry, Kyungpook National University)
  • Published : 2006.12.30

Abstract

Somatic embryos do not survive at exposure to liquid nitrogen temperatures without cryoprotective treatments. A simplified technique which simultaneously induces and cryoprotects embryogenic calli using plant vitrification solution 2 (PVS2) followed by dehydration was developed for the cryopreservation of Soap berry genetic resources. Vitrification is a way of removing the moisture in vegetation through PVS2. The PVS2 vitrification solution consisted of 30% glycerol (w/v), 15% ethylene glycol (w/v), 15% Dimethylsulfoxide (w/v) in B5 medium containing 0.4M sucrose. Two tests were done. The one was to eliminate moisture at $0^{\circ}C$ and the other at $25^{\circ}C$. In both cases the best results came out at a vitrification time of $10{\sim}20$ minutes. It was also found that the survival rate was higher at $0^{\circ}C$ than at $25^{\circ}C$. In particular, the survival rate reached more than 80%. Water-damaged embryos turned brown and stoped growth, but energetic embryos took on a milky hue and show a very vigorous growth rate. Successful cryopreservation of somatic embryos of soapberry can be used to establish in vitro genebanks for long-term conservation of Soapberry genetic resources to complement field genebanks and other in vitro methods already being used.

Keywords

References

  1. Barbara, M. R., D. Dominique, M. D. Jeanine and E. B. Erica. 2001. Validation of cryopreservation protocols for plant germplasm conservation: a pilot study using Ribes L. Biodiversity and Conservation 10: 939-949 https://doi.org/10.1023/A:1016692730481
  2. Corredoira, E., M. C. San-Jose, A.Ballester and A. M. Vieitez. 2004. Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 25: 33-42
  3. Jokipii, S., L. Ryynanen, P. Kallio, T. Aronen and H. Haggman. 2004. A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. x Populus tremuloides Michx. Plant Science 166: 799-806 https://doi.org/10.1016/j.plantsci.2003.11.017
  4. Kuranuki, Y. and A. Sakai. 1995. Cryopreservation of in vitro-grown shoot tips of tea (Camellia sinensis) by vitrification. CryoLetters 16: 345-352
  5. Lambardi, M, A. De Carlo andM. Capuana. 2005. Cryopreservation of embryogenic callus of Aesculus hippocastanum L. by vitrification or one-step freezing. CryoLetters 26: 185-192
  6. Lambardi,M, A. Fabbri andA. Caccavale. 2000. Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Reports 19: 213-218 https://doi.org/10.1007/s002990050001
  7. Langdon, R. 1996. The soapberry, a neglected clue to Polynesia's prehistoric past. Journal of the Polynesian Society 105: 185-200
  8. Martinez, M. T., A. Ballester and A. M. Vieitez. 2003. Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46: 182-189 https://doi.org/10.1016/S0011-2240(03)00024-5
  9. Nishizawa, S.,A. Sakai, Y. Amano and T. Matsuzawa. 1992. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic cells and subsequent plant regeneration by a simple freezing method. CryoLetters 13: 379-388
  10. Sakai. A., S. Kobayashi and I. Oiyama. 1990. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9: 30-33
  11. Sakai, A., S. Kobayashi and I. Oiyama. 1991. Survival by vitrification of nucellar cells of navel orange (Citrus sinensis var. brasiliensis Tanaka) cooled to $-196{\circ}$. J. Plant Physiol 137: 465-470 https://doi.org/10.1016/S0176-1617(11)80318-4
  12. Scocchi, A.,M. Faloci, R. Medina, S. Olmos and L. Mroginski. 2004. Plant recovery of cryopreserved apicalmeristem-tips of Melia azedarach L. using encapsulation/dehydration and assessment of their genetic stability. Euphytica 135: 29-38 https://doi.org/10.1023/B:EUPH.0000009538.01279.d3
  13. Sengupta, A. and S. P. Basu. 1982. Chemical investigations of the Sapindus mukorossi seed oil. Fette, Seifen, Anstrichmittel 84: 411-415 https://doi.org/10.1002/lipi.19820841011
  14. Shatnawi,M. A., F. Engelmann, A. Frattarelli and C. Damiano. 1999. Cryopreservation of apices of in vitro plantlets of almond (Prunus dulcisMill.). Cryo-Letters 20: 13-20
  15. Takagi, K, E.H. Park and H.Kato. 1980. Anti-inflammatory activities of hederagenin and crude saponin isolated from Sapindus mukorossi Gaertn. Chemical and Pharmaceutical Bulletin 28: 1183-1188 https://doi.org/10.1248/cpb.28.1183
  16. Ugent, D. 2000. Medicine, myths andmagic the folk healers of amexican market. Economic Botany 54: 427-438 https://doi.org/10.1007/BF02866542
  17. Wilson, E.O. 1988. The current state of biodiversity. In: Biodiversity. E.O. Wilson (ed). National Academy Press,Washington, D.C
  18. Wu, Y., F. Engelmann, Y. Zhao, M. Zhou and S. Chen. 1999. Cryopreservation of apple shoot tips: Importance of cryopreservation technique and of conditioning of donor plants. Cryo-Letters 20: 121-130