Characterization of $\beta$-Ketoadipate Pathway from Multi-Drug Resistance Bacterium, Acinetobacter baumannii DU202 by Proteomic Approach

  • Park, Soon-Ho (Proteomics Team, Korea Basic Science Institute) ;
  • Kim, Jae-Woo (Department of Laboratory Medicine, Dong-A University Medical Center) ;
  • Yun, Sung-Ho (Proteomics Team, Korea Basic Science Institute) ;
  • Leem, Sun-Hee (Department of Biology, Dong-A University) ;
  • Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University) ;
  • Kim, Seung-Il (Proteomics Team, Korea Basic Science Institute)
  • 발행 : 2006.12.31

초록

In this study, the biodegradative activities of monocyclic aromatic compounds were determined from the multi-drug resistant (MDR) Acinetobacter baumannii, which were studied in the form of clinical isolates from a hospital in Korea. These bacteria were capable of biodegrading monocyclic aromatic compounds, such as benzoate and p-hydroxybenzoate. In order to determine which pathways are available for biodegradation in these stains, we conducted proteome analyses of benzoate, and p-hydroxybenzoate-cultured A. baumannii DU202, using 2-DE/MS analysis. As genome DB of A. baumannii was not yet available, MS/MS analysis or de novo sequencing methods were employed in the identification of induced proteins. Benzoate branch enzymes [catechol 1,2-dioxygenase (CatA) and benzoate dioxygenase $\alpha$ subunit (BenA)] of the $\beta$-ketoadipate pathway were identified under benzoate culture condition and p-hydroxybenzoate branch enzymes [protocatechuate 3,4-dioxygenas $\alpha$ subunit (PcaG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaR)] of the $\beta$-ketoadipate pathway were identified under p-hydroxybenzoate culture condition, respectively, thereby suggesting that strain DU202 utilized the $\beta$-ketoadipate pathway for the biodegradation of monocyclic aromatic compounds. The sequence analysis of two purified dioxygenases (CatA and PcaGH) indicated that CatA is closely associated with the CatA of Acinetobacter radiresistance, but PcaGH is only moderately associated with the PcaGH of Acinetobacter sp. ADPI. Interestingly, the fused form of PcaD and PcaC, carboxymuconolactone decarboxylase (PcaCD), was detected on benzoate-cultured A. baumannii DU202. These results indicate that A. baumannii DU202 exploits a different $\beta$-ketoadipate pathway from other Acinetobacter species.

키워드

참고문헌

  1. Abbo, A., S. Navon-Venezia, O. Hammer-Muntz, T. Krichali, Y. Siegman-Igra, and Y. Carmeli. 2005. Multidrug-resistant Acinetobacter baumannii. Emerg. Infect. Dis. 11, 22-29 https://doi.org/10.3201/eid1101.040001
  2. Aoki, K., K. Konohana, R. Shinke, and H. Nishira. 1984. Purification and characterization of catechol 1,2-dioxygenase from aniline-assimilating Rhodococcus erythropolis AN-13. Agric. Biol. Chem. 48, 2087-2095 https://doi.org/10.1271/bbb1961.48.2087
  3. Barbe, V., D. Vallenet, N. Fonknechten, A. Kreimeyer, S. Oztas, L. Labarre, S. Cruveiller, C. Robert, S. Duprat, P. Wincker, N.L. Ornston, J. Weissenbach, P. Marliere, G.N. Cohen, and C. Medigue. 2004. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 19, 5766-5779
  4. Bergogone-Berezin, E. and K.J. Towner. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9, 148-165
  5. Bradford, M.M. 1976. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Bull, C. and D. Ballou. 1981. Purification and properties of protocatechuate 3,4-dioxygenase from Pseudomonas putida. J. Biol. Chem. 256, 12673-12680
  7. Caposio, P., E. Pessione, G, Giuffrida, A, Conti, S. Landolfo, C. Giunta, and G. Gribaudo. 2002. Cloning and characterization of two catechol 1,2-dioxygenase genes from Acinetobacter radioresistens S13. Res. Microbiol. 153, 69-74 https://doi.org/10.1016/S0923-2508(01)01290-6
  8. Eulberg, D., S. Lakner, L. Golovlerva, and M. Schlömann. 1998. Characterization of a protocatechuate catabolic gene cluster from Rhodococcus opacus 1CP: Evidence for a merged enzyme with 4-caboxymuconolactone-dcarboxylating and 3-oxoadipate enol-lactone-hydroyzing activity. J. Bacteriol. 180, 1072-1081
  9. Fournier, P.E., D. Vallenet, V. Barbe, S. Audic, H. Ogato, L. Poirel, H. Richet, C. Rabert, S. Mangenot, C. Abergel, P. Nordmann, J. Weissenbach, D. Raoult, and J.M. Claverie. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. Plos. Genetics 2, 62-72 https://doi.org/10.1371/journal.pgen.0020062
  10. Giuffrida, M.G., E. Pessione, R. Mazzoli, G. Dellavalle, C. Barello, A. Conti, C. Giunta, 2001. Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens, as revealed by proteome analysis. Electrophoresis 22, 1705-1711 https://doi.org/10.1002/1522-2683(200105)22:9<1705::AID-ELPS1705>3.0.CO;2-0
  11. Guardabassi, L., A. Petersen, J.E. Olsen, and A. Dalsgaard. 1998. Antibiotic resistance in Acinetobacter spp. isolated from sewers receiving waste effluent from a hospital and a pharmaceutical plant. Appl. Environ. Microbiol. 64, 3499-3502
  12. Harwood, C.S. and R.E. Parales. 1996. The $\beta$-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50, 553-590 https://doi.org/10.1146/annurev.micro.50.1.553
  13. Kim, S.I., J.Y. Kim, S.H. Yun, J.H. Kim, S.H. Leem, and C.H. Lee. 2004. Proteome analysis of Pseudomonas sp. K82 biodegradation pathways. Proteomics 4, 3610-3621 https://doi.org/10.1002/pmic.200400977
  14. Kim, Y.H., K. Cho, S.H. Yun, J.Y. Kim, K.H. Kwon, J.S. Yoo, and S.I. Kim. 2006. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 by combined proteomic approach: 2-DE/MS and cleavable ICAT analysis. Proteomics 6, 1301-1318 https://doi.org/10.1002/pmic.200500329
  15. Kuo, L.C., L.T. Teng, C.J. Yu, S.W. Ho, and P.R. Hsueh. 2004. Dissemination of a clone of unusual phenotype of pandrug- esistant Acinetobacter baumannii at a university hospital in Taiwan. J. Clin. Microbiol. 42, 1759-1763 https://doi.org/10.1128/JCM.42.4.1759-1763.2004
  16. Llanes, C., D. Hocquet, C. Vogne, D. Benali-Baitich, C. Neuwirth, and P. Plesiat. 2004. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob. Agents Chemother. 48, 1787-1802
  17. Magnet, S., P. Courvalin, and T. Lambert. 2001. Resistanceodulation- cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother. 45, 3375-3380 https://doi.org/10.1128/AAC.45.12.3375-3380.2001
  18. Murray, P.R., E.J. Baron, J.H. Jorgensen, M.A. Pfaller, and R.H. Yolken. 2003. Manual of clinical microbiology, 8th ed. American Society for Microbiology, Washington DC, USA
  19. Navon-Venezia, S., R. Ben-Ami, and Y. Carmeil. 2005. Updata on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr. Opin. Infect. Dis. 18, 306-313 https://doi.org/10.1097/01.qco.0000171920.44809.f0
  20. Pessione, E., M.G. Giuffrida, R. Mazzoli, P. Caposio, S. Landolfo, A. Conti, C. Giunta, and G. Gribaudo. 2001. The catechol 1,2 dioxygenase system of Acinetobacter radioresistens: isoenzymes, inductors and gene localisation. Biol. Chem. 382, 1253-1261 https://doi.org/10.1515/BC.2001.156
  21. Van Looveren, M. and H. Goossens. 2004. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin. Microbiol. Infect. 10, 684-704 https://doi.org/10.1111/j.1469-0691.2004.00942.x
  22. Wendt, C., B. Dietze, E. Dietze, and H. Rüden. 1997. Survival of Acinetobacter baumannii on dry surfaces. J. Clin. Microbiol. 35, 1394-1397
  23. Yun, S.H., C.Y. Yun, and S.I. Kim. 2004. Characterization of protocatechuate 4,5-dioxygenase induced from p-Hydroxybenzoate-ultured Pseudomoans sp. K82. J. Microbiol. 42, 152-155