Evaluation of the Diversity of Cyclodextrin-Producing Paenibacillus graminis Strains Isolated from Roots and Rhizospheres of Different Plants by Molecular Methods

  • Vollu Renata Estebanez (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Fogel Rafael (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Santos Silvia Cristina Cunha dos (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Mota Fabio Faria da (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro) ;
  • Seldin Lucy (Instituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro)
  • Published : 2006.12.31

Abstract

To address the diversity of cyclodextrin-producing P. graminis strains isolated from wheat roots and rhizospheres of maize and sorghum sown in Australia, Brazil, and France, restriction fragment length polymorphism analysis of part of genes encoding RNA polymerase (rpoB-RFLP) and DNA gyrase subunit B (gyrB-RFLP) was used to produce genetic fingerprints. A phylogenetic tree based on rpoB gene sequences was also constructed. The isolates originated from Brazil could be separated from those from Australia and France, when data from the rpoB-based phylogenetic tree or gyrB-RFLP were considered. These analyses also allowed the separation of all P. graminis strains studied here into four clusters; one group formed by the strains GJK201 and $RSA19^T$, second group formed by the strains MC22.02 and MC04.21, third group formed by the strains TOD61, TOD 221, TOD302, and TOD111, and forth group formed by all strains isolated from plants sown in Cerrado soil, Brazil. As this last group was formed by strains isolated from sorghum and maize sown in the same soil (Cerrado) in Brazil, our results suggest that the diversity of these P. graminis strains is more affected by the soil type than the plant from where they have been isolated.

Keywords

References

  1. Albuquerque, J.P., F.F. Mota, I. von der Weid, and L. Seldin. 2006. Diversity of Paenibacillus durus strains isolated from soil and different plant rhizospheres evaluated by ARDRA and gyrB-RFLP analysis. Eur. J. Soil Biol. 42, 200-207 https://doi.org/10.1016/j.ejsobi.2006.03.002
  2. Axelrood, P.E., M.L. Chow, C.S. Arnold, K. Lu, J.M. McDermott, and J. Davies. 2002. Cultivation-dependent characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can. J. Microbiol. 48, 643-654 https://doi.org/10.1139/w02-058
  3. Berge, O., M.H. Guinebretière, W. Achouak, P. Normand, and T. Heulin. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52, 607-616 https://doi.org/10.1099/00207713-52-2-607
  4. Birnboim, H.C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513-1523 https://doi.org/10.1093/nar/7.6.1513
  5. Cannon, F.C., G.E. Riedel, and F.M. Ausubel. 1979. Overlapping sequences of Klebsiella pneumoniae nif DNA cloned and characterized. Mol. Gen. Genet. 174, 59-66 https://doi.org/10.1007/BF00433306
  6. Coelho, M.M.R., I. von der Weid, V. Zahner, and L. Seldin. 2003. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction-restriction fragment polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiol. Lett. 222, 243-250 https://doi.org/10.1016/S0378-1097(03)00300-8
  7. Dahllöf, I., H. Baillie, and S. Kjelleberg. 2000. rpoB-based microbial community analysis avoids limitations inherent in 16S rDNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66, 3376-3380 https://doi.org/10.1128/AEM.66.8.3376-3380.2000
  8. De Clerck, E. and P. De Vos. 2004. Genotypic diversity among Bacillus licheniformis strains from various sources. FEMS Microbiol. Lett. 231, 91-98 https://doi.org/10.1016/S0378-1097(03)00935-2
  9. Doukyu, N., H. Kuwahara, and R. Aono. 2003. Isolation of Paenibacillus illinoisensis that produces cyclodextrin glucanotransferase resistant to organic solvents. Biosci. Biotechnol. Biochem. 67, 334-340 https://doi.org/10.1271/bbb.67.334
  10. Drancourt, M. and D. Raoult. 2002. rpoB gene sequencebased identification of Staphylococcus species. J. Clin. Microbiol. 40, 1333-1338 https://doi.org/10.1128/JCM.40.4.1333-1338.2002
  11. Garbeva, P., J.A. van Veen, and J.D. van Elsas. 2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial. Ecol. 45, 302-316 https://doi.org/10.1007/s00248-002-2034-8
  12. Gordon, R.E., W.C. Haynes, and H.–N. Pang. 1973. The genus Bacillus, Agriculture Handbook 427, Agricultural Research Service, US Department of Agriculture, Washington DC, USA
  13. Jeang, C.L., D.G. Lin, and S.H. Hsieh. 2005. Characterization of cyclodextrin glycosyltransferase of the same gene expressed from Bacillus macerans, Bacillus subtilis, and Escherichia coli. J. Agric. Food Chem. 53, 6301-6304 https://doi.org/10.1021/jf0503356
  14. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  15. La Duc, M.T., M. Satomi, N. Agata, and K. Venkateswaran. 2004. gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J. Microbiol. Methods 56, 383-394 https://doi.org/10.1016/j.mimet.2003.11.004
  16. Mota, F.F., E.A. Gomes, E. Paiva, A.S. Rosado, and L. Seldin. 2004. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett. Appl. Microbiol. 39, 34-40 https://doi.org/10.1111/j.1472-765X.2004.01536.x
  17. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R.I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178, 5636-5643 https://doi.org/10.1128/jb.178.19.5636-5643.1996
  18. Qi, Q. and W. Zimmermann. 2005. Cyclodextrin glucanotransferase: from gene to applications. Appl. Microbiol. Biotechnol. 66, 475-485 https://doi.org/10.1007/s00253-004-1781-5
  19. Renesto, P., J. Gouvernet, M. Drancourt, V. Roux, and D. Raoult. 2001. Use of rpoB gene analysis for detection and identification of Bartonella species. J. Clin. Microbiol. 39, 430-437 https://doi.org/10.1128/JCM.39.2.430-437.2001
  20. Rodrigues, J.L.M., M.E. Silva-Stenico, J.E. Gomes, J.RS. Lopes, and S.M. Tsai. 2003. Detection and diversity assessment of Xylella fastidiosa in field-collected plant and insect simples by using 16S rRNA and gyrB sequences. Appl. Environ. Microbiol. 69, 4249-4255 https://doi.org/10.1128/AEM.69.7.4249-4255.2003
  21. Ross, N., R. Villemur, E. Marcandella, and L. Deschênes. 2001. Assessment of changes in biodiversity when a community of ultramicrobacteria isolated from groundwater is stimulated to form a biofilm. Microbial. Ecol. 42, 56-68
  22. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  23. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. In Molecular Cloning: A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA
  24. Seldin, L., A.S. Rosado, D.W. da Cruz, A. Nóbrega, J.D. van Elsas, and E. Paiva. 1998. Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different brazilian soils. Appl. Environ. Microbiol. 64, 3860-3868
  25. Seldin, L. and D. Dubnau. 1985. DNA homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans and others nitrogen fixing Bacillus strains. Int. J. Syst. Bacteriol. 35, 151-154 https://doi.org/10.1099/00207713-35-2-151
  26. Seldin, L. and E.G.C. Penido. 1986. Identification of Bacillus azotofixans using API tests. Antonie van Leeuwenhoek 52, 939-946
  27. Seldin, L., J.D. van Elsas, and E.G.C. Penido. 1983. Bacillus nitrogen fixers from Brazilian soils. Plant Soil 70, 243-255 https://doi.org/10.1007/BF02374784
  28. Seldin, L., J.D. van Elsas, and E.G.C. Penido. 1984. Bacillus azotofixans sp. nov., a nitrogen-fixing species from brazilian soils and grass roots. Int. J. Syst. Bacteriol. 34, 451-456 https://doi.org/10.1099/00207713-34-4-451
  29. Shida, O., H. Takagi, K. Kadowaki, L.K. Nakamura, and K. Komagata. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289-298 https://doi.org/10.1099/00207713-47-2-289
  30. Silva, K.R.A., J.F. Salles, L. Seldin, and J.D. van Elsas. 2003. Assessment of the diversity of Paenibacillus spp. in the rhizosphere of different maize cultivars in two soils by Paenibacillus-specific PCR-DGGE and sequence analysis. J. Microbiol. Methods 54, 213-231 https://doi.org/10.1016/S0167-7012(03)00039-3
  31. Suominen, I., C. Sproer, P. Kampfer, F.A. Rainey, K. Lounatmaa, and M. Salkinoja-Salonen. 2003. Paenibacillus stellifer sp. nov., a cyclodextrin-producing species isolated from paperboard. Int. J. Syst. Evol. Microbiol. 53, 1369-1374 https://doi.org/10.1099/ijs.0.02277-0
  32. Takano, T., M. Fukada, M. Monma, S. Kobayashi, K. Kainuma, and K. Yamane. 1986. Molecular cloning, DNA nucleotide sequencing, and expression in Bacillus subtilis cells of the Bacillus macerans cyclodextrin glucanotransferase gene. J. Bacteriol. 166, 1118-1122 https://doi.org/10.1128/jb.166.3.1118-1122.1986
  33. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  34. von der Weid, I., A. Nobrega, E. Paiva, J.D. van Elsas, and L. Seldin. 2000. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in cerrado soil. Res. Microbiol. 151, 369-381 https://doi.org/10.1016/S0923-2508(00)00160-1
  35. Yamada, S., E. Ohashi, N. Agata, and K. Venkateswaran. 1999. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Appl. Environ. Microbiol. 65, 1483-1490
  36. Yamamoto, S. and S. Harayama. 1995. PCR amplification and direct sequencing of gyrB with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61, 1104-1109
  37. Yoon, J.-H., D.K. Yim, J.-S. Lee, K.-S. Shin, H.H. Sato, S.T. Lee, Y.K. Park, and Y.-H. Park. 1998. Paenibacillus campinasensis sp. nov., a cyclodextrin-producing bacterium isolated in Brazil. Int. J. Syst. Bacteriol. 48, 833-837 https://doi.org/10.1099/00207713-48-3-833