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POSITIVE COEXISTENCE FOR A SIMPLE FOOD
CHAIN MODEL WITH RATIO-DEPENDENT
FUNCTIONAL RESPONSE AND CROSS-DIFFUSION

WonNLYUL KO AND INKYUNG AHN

ABSTRACT. The positive coexistence of a simple food chain model
with ratio-dependent functional response and cross-diffusion is dis-
cussed. Especially, when a cross-diffusion is small enough, the exis-
tence of positive solutions of the system concerned can be expected.
The extinction conditions for all three interacting species and for
one or two of three species are studied. Moreover, when a cross-
diffusion is sufficiently large, the extinction of prey species with
cross-diffusion interaction to predator occurs. The method em-
ployed is the comparison argument for elliptic problem and fixed
point theory in a positive cone on a Banach space.

1. Introduction

In this paper, the following 3x 3 elliptic system with a ratio-dependent
functional response and cross-diffusion is studied:

—Al(d: + o] = uar — u - e1225)
~doAv = v(ag — v+ m15% - sziuw)

—d3Aw = wlag —w +maz,) in €,

(u,v,w) = (0,0,0) on 011,
where 2 C R™ is a bounded region with smooth boundary 92. While
the given coefficients d;, ¢;, m;, a1 and @ are positive constants, the
constants a; are permitted to be positive or negative for ¢ = 2,3. Here
A is the Laplacian operator and u, v, w represent the densities of the
three interacting species. Model (1) describes predator-prey interactions
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among the three species, more precisely, species v is a predator only on
u and w preys only on v. This is called a simple food-chain model. The
domain with homogeneous Dirichlet boundary conditions indicates the
region with a hostile boundary environment. We say that the system
(1) has a positive solution (u,v,w) if u(z) > 0, v(z) > 0 and w(z) > 0
for all z € 2. The existence of a positive solution (u,v,w) to the system
(1) is called the positive coezistence.

Food-chain models have been studied in both spatially homogene-
ous [8] and spatially inhomogeneous situations [6, 20] for the last two
decades. It is well accepted that the dynamics of the three species model
is relatively more complicated than that of the two species model. (See
6,7, 8, 16, 20] and the references therein.) Even with respect to the ODE
system, the dynamics for the behavior of positive solutions is much com-
plicated [8]. Additional work relating to the three-species model with
predator-prey interacting type with diffusions can be found in [10, 17].
Recently, certain predator-prey models, so called the ratio-dependent
predator-prey models (that is, the per capita predator growth rate de-
pends on a function of the ratio of prey to predator abundance), are
proposed by R. Arditi and L. R. Ginzburg in [1]. Since then, as well as
the actual evidences and justifications (2, 3, 4, 9], the models have been
mathematically studied for spatially homogeneous case [11, 12, 13, 14].

On the other hand, there has been a considerable amount of interest
to the system with cross-diffusion since the proposal of the model in
study of spatial segregation of two interacting species by Shigesada et
al. [27]. In [21, 22], they investigated the existence of non-constant
solutions to the 2 x 2 competing interaction system with cross-diffusions
under homogeneous Neumann boundary conditions. In [24], the authors
studied the positive coexistence of the system with self-cross diffusions
which describes competing or predator-prey interactions between two
species using the method of decomposing operators and the theory of
fixed point index. Recently, in [15], for the predator-prey interacting
system with only cross diffusions between two species, they showed the
multiplicity of positive coexistence under appropriate assumptions. In
[25], it was shown that the existence of positive solutions to the 2 x 2
competing system of a general nonlinear type with self-cross diffusions
under Robin boundary conditions where the diffusion rates are strictly
positive.
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In this paper, we are interested in the situation that predator and
prey species have a diffusive interaction among three species with ratio-
dependent terms and spatially inhomogeneous distribution with cross-
diffusion on a region. We obtain sufficient conditions for the positive
coexistence to the system (1) and give the proof for the existence of
positive solutions using theory of fixed point index on a positive cone.
In addition, the non-existence of positive solutions is studied. In accord-
ing to our results, as cross-diffusion is sufficiently large, the extinction
of prey species with cross-diffusion interaction to predator occurs, and
sufficiently small cross-diffusion helps to create the positive coexistence
among food-chain species.

One of the mathematical difficulties in the model (1) relates to the
method of treating the singular point (0,0,0). To overcome this diffi-
culty, we will adopt the idea of Kuang and Berreta in [14], more precisely,
since lim, »)—.(0,0) 795 = 0 and lim, 4)—(0,0) o+ = 0, the domain of
o and 2% to {(u,v,w) : v > 0,9 > 0,w > 0} may be extended so
that (0,0,0) becomes a trivial solution of (1).

This paper is organized as follows. In Section 2, known results which
are useful in later sections are presented. In Section 3, sufficient condi-
tions for the positive coexistence of (1) are given. The nonexistence of
positive solutions of the steady state to the model is discussed in Section
4.

2. Preliminaries

In this section, some known lemmas and theorems are stated, which
are used in this paper. The following lemmas can be obtained from (24,
25] with a simple modification using homogeneous Dirichlet boundary
condition.

For d(z) > 0 in C%(Q2) and b(z) € L>®(Q), let A\ (Ad(z) + b(z)) be
the principal eigenvalue of the following eigenvalue problem:

Ad(z)p 4+ b(z)p =A¢p in Q,
{ ¢=0 on Of).

Then the variational property gives
—|V]d 2+ d(z)b(x)&2
A (Ad(z)+b(z)) = sup fQ V[d(z)¢]] +2(33) (w)€ .
EEW2(Q) IV d(z)]l7

LEMMA 1. Assume that Zi%i; > Zzgﬁg, where d;(z) > 0 in C?(Q2) and
bi(x) € L*>®°(Q) fori=1,2.
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(1) If M (Ady(z) + bi(z)) <0 >\ (Ada(z) + ba(z)) < 0.

(ii) If M (Adz(z) + b2(z)) > 0, A1 (Adi(z) + bi(z)) > 0.

Furthermore, Ai1(Ad(z) + b(z )) is increasing and decreasing in b(z)
and d(z), respectively.

LEMMA 2. Let d(z) > 0 in C?(Q), b(z) € L®(Q) and ¢ >0, ¢ Z 0
in Q with ¢ = 0 on 9.

(i) If 0 # Ad(z)p + b(x)¢ > 0, then A\ (Ad(z) + b(z)) >0

(ii) If 0 # Ad(z)¢ + b(z)¢ < 0, then A1 (Ad(x) + b(z)) < 0.

(iii) If Ad(z)¢ + b(z)¢ = 0, then A\1(Ad(z) + b(z)) =0

Let 7(T) be the spectral radius of a linear operator 7' : E — E, where
FE is a Banach space.

LEMMA 3. Let d(x) > 0 in C?(Q), b(z) € L®(Q) and M be a positive
constant such that b(x) + Md(z) > 0 for all z € Q). Then we have
(i) If Ay (Ad(x) +b(x)) > 0, then r[ﬁ(—A+M)_1(b(m)+Md(:v))] > 1;
(if) If Ay (Ad(z)+b(z)) < 0, then r[—x)( A+ M)~ (b(z)+ Md(z ))] <1;
(if) If A1 (Ad(z)-+b(x)) = 0, then | 7y (~A+ M)~} (b(z) + Md(x))| = 1.

Consider the following single equation

(2) { ;i[g(w)aﬁ] =of@¢) g |

where f(z,¢) is C-function in ¢ and C%function in z, and d(z) €
C%(Q) with d(z) > 0 for all z € .

We have the following existence and uniqueness theorem of positive
solution for (2).

THEOREM 4. Assume that fg < 0 for ¢ > 0 and f(z,M) < 0 for
some positive constant M.

(i) If Mi(Ad(z) + f(x,0)) <0, then (2) has no positive solution.

(ii) If A\ (Ad(z)+ f(z,0)) > 0, then (2) has a unique positive solution.

Let E be a Banach space and W a total wedge in F, i.e., W is a closed
convex subset of E such that aW C Efora>0and W -W =FE. A
wedge W is said to be a cone if WN(—W) = {0}. Let y € W and define
Wy={z€E:y+~yz €W for some vy > 0}. Let Sy ={z e W, : -z €
W,}. Then W, is a wedge and Sy is a closed subspace of E. We say
that £ has property « if there is a t € (0,1) and a w € W, \ S, such
that w —tLw € Sy. Assume A: W — W is a compact operator with
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fixed point y € W and A is Fréchet differentiable at y. Let £ = A'(y)
be the Fréchet derivative of A4 at y. Then £ maps Wy to itself.

For an open subset N C W, index(A, N, W) is the Leray-Schauder
degree degy, (I — A, N,0) where I is the identity map. If y is an isolated
fixed point of A, then the fixed point index of A at y in W is defined
by index(A,y, W) = index(A, N(y), W), where N(y) is a small open
neighborhood of ¥ in W. We denote index(A,y) = index(A4,y, W) and
index(A, N) = index(A4, N, W).

In [5], E. N. Dancer introduced the formula to explicitly evaluate the
indices of a compact operator at the isolated fixed points on cones in a
Banach space. Later, this result was improved by L. Li [18], M. Wang
et al. [29] and W. H. Ruan and W. Feng [23]. The following can be
obtained from the results of [5, 18, 29].

THEOREM 5. Assume that I — L is invertible on W,

(i) If £ has property a, then index(A,y, W) = 0.

(ii) If £ does not have property «, then index(A,y,W) = (-1)7,
where o is the sum of multiplicities of all the eigenvalues of £ which are
greater than one.

3. Existence theorem for food chain model

In this section, the existence of positive solutions of (1) will be dis-
cussed. By Theorem 4, (1) has at most three semi-trivial solutions
when exactly two of the species are absent. Denote these nonnegative
and nonzero solutions by (ug,0,0), (0,vg,0) and (0,0, wp). Here, up is
the positive solution of the following equation:

(3) { -—dlAu = u(al - u) in Q,

u=20 on 052
if M(d1A 4 a1) > 0. Symmetrically, vo and wp can be obtained by
replacing d; and a; in (3) with d; and a; for i = 2, 3, respectively.

THEOREM 6. Any positive solution (u,v,w) of (1) has an a-priori
bound:

u< R:= %(d1+£a1(a1+a2+m1)>, v<as+myp and w < ag+mo.
1 Ci

ProoF. Let (u,v,w) be a positive solution of (1). Since az — v +

L — -2 < az+my —v, v < az +my follows by the strong

my u+v v+ —
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maximum principle and Hopf’s lemma. Similarly, w < a3 + mo can be
obtained.
Consider the following elliptic problem:
—A[(d1 + fv)u] = u(ag —u—clu+v) in Q,
u=0 on Of2.

Assume that ||(d1 + Bv)ul|ec = (d1 + Bv(xo))u(z) > 0 for some zy € Q.
Then it follows easily that

~A[(dy + Bo(zo))ulzo)] = u(zo) (a1 — u(zo) — clﬁ%> > 0.

Since a; — u(zg) — clh—(—%%)(%—) > 0, u(zo) < a1 follows, so that v(zp) <
& (u(zo) +v(z0)) < (a1 +az+mi) comes from the fact of v < ag+m;.

Thus
diu < —'8
1w < ||(di + fv)ulleo < ar{di + cla1(a1 + az +m1)

follows, so that one can have the desired result. O

Now we introduce the following notations which are used throughout
this paper: . _ _

(i) X :==Cp(Q) @& Cp() ® Cp(Q), where Cp(Q) :={p € C(Q) : ¢ =
0 on 00}

(ii) W:=K o K & K, where K = {¢p € Cp(Q) : 0 < ¢(z), z € Q};

(i) @ := max{R, az + mq, az+ma} + 1;

(iv) N(p) :={z € Cp(Q1) : 0 < 2z < pon Q};

(v) Do == N(Q)® N(Q) ® N(Q).

For 0, 62, 03 € [0,1], define the positive and compact operator
g91,02’93 : EQ — W via

g91,92,93 (’LL, v, w)

01u(a1——u—01u+v)+P(d1+ﬁv)
=(-A+P)” 1 92U(6L2—U+mlu+u v+w)+Pd2v
93’11)((13 —w+ my ) + Pdsw

v+w
where the constant P is taken so large that P > min{%lcl + 2R —
a1, —dl—2|02 + 2(m1 + a2) — asl, di3|2(a3 + m2) — as|}. Note that for
the compactness, define ;% = 0 and Uz_ww =0atu=v=w=0.
Denote G = Gy1,1. Then from (1), observe D(u,v,w) = G(u,v,w),
where D(u,v,w) = ((d1 + Bv)u, dov, dsw).

Note that since the Jacobian of D is positive in Dg, it has the inverse
D~!. Define the positive and compact operator Ag, 9,4, : Dg — W
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via Ag, g, 0, (u, v, w) = D 1lo G6,,65,6;(u, v, w). Then (1) has a positive
solution if and only if .4 = A, 1,1 has a positive fixed point.
LEMMA 7. index(A, Dg) = 1.

PROOF. First of all, note that by the definition of Dg, Ag, ¢, 6, has
no fixed points on 92. So using homotopy invariance property of index,
index(A, Dg) = index(A1 1,1, Do) = index(Ag,0,0, Dg), where

P(dl + ﬂv)u
Ap,0,0(u, v, w) = 'D_lgoyo’o(u, v, w) = D_l(——A + P)_1 Pdyv

Pdsw
One can see that (0,0, 0) is the only fixed point of Ay g in D¢ and there-
fore index(Ag 0,0, Dg) = index(Ag 0, (0,0,0)) by the excision property
of index. Observe that -
L:= A6,0,0 (0: 0, O) = (D—l),(go,g’o (O’ 0, O))g(l),O,O (07 0, 0)

Since Gp0,0(0,0,0) = D(0,0,0) = (0,0,0), the inverse function theorem
implies

(D7) (Go,00(0,0,0)) = (D~)(D(0,0,0))

& 0 0
= (D'(0,0,0))'=f0 £ ©
0 0 Z
Consequently,
& 0 0
L= 0 % 0 g(l),0,0(anao)
0 0 +
z 0 0 Pd; 0 0
={0 &£ 0](-A+P)'| 0 Pdy 0
0 0 = 0 0 Pds

and it is easy to see W(O’O,O) =W and S(g,0) = {(0,0,0)}. By Theorem
5, the remained proof can be done throughout the following claims:
Claim 1: I — L is invertible on W(0,0,0)> where £ = Aj (0,0,0).
Claim 2: The sum of multiplicities of all the eigenvalue of £ which
are greater than one is zero.
Claim 8: L does not have property «.

Proof of Claim 1: Let L(¢1, d2, $3)T = (¢1, b2, ¢3)T €¢ W (0,0,0- Then
(=A + P)~Y(Pd;)¢; = di¢p; for i = 1,2,3. This gives _—_Ad ¢; =0, so
that ¢;, =0 for 2 = 1,2,3. Hence I — L’ is invertible on W g ¢ g)-
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Proof of Claim 2: Since A\i1(Ad;) < 1 for i = 1,2,3, r[dli(—A +
P)71Pd;] < 0 by Lemma 3. Thus r[£] < 1 follows.

Proof of Claim 3: Suppose that £ has property «. Then there
exists to € (0,1) and (¢1,d2,P3) € W(O,O,O)\S(Op,g) such that (I —
toL)(b1, b2, ¢3)T € S(0,0,0)- This is equivalent to dl (—A+P)"Y(Pd;ip;) =
¢’ > ¢; in Q and ¢; = 0 on I for ¢ = 1,2,3. Hence r(L) > 1 follows.
ThlS contradicts to Claim 2. O

Now, let’s calculate index value of A at (0,0,0). Since the Fréchet
derivative of A does not defined at (u,v,w) = (0,0, 0), we have difficulty
in developing our argument. But this adversity can be resolved by using
e-perturbation A of A as in [26]. In the concrete, index(A, (0,0,0)) =
lim._,¢ index(.A,, (0,0, 0)), where

Af(u7 U? w)

u(ar — u — cigperz) + P(di + Bo)u
=D Y ~A+P) | v(az—v+ M1 e — C2orare) T+ Pd2v
w(a3 —w -+ mzﬁ) + Pd3w

(See Chap. 12 in [28].) In fact, one of the conditions A\; (diA+a;—c1) >
0, A1(d2A+az2 —c2) > 0, and A\1(d3A+a3) > 0 is needed to preserve the
same index value regardless of a e-perturbation which gives a Fréchet
differentiability at (u, v, w) = (0,0,0). The reason is that A;(dyA+a1) in
the below Lemma 8 can be replaced by A1(diA+aj—c;) by applying a e-
perturbation to v as like ¢; uj’r:ji - = C1—Clgpars - Similarly, A;(dzA+az)
in the below Lemma 8 can be replaced by A;(daA+aga—c2). Hence if one
of /\1(d1A +a; — 61) > 0, Al(dgA +ag — 62) > 0 and )\1(d3A + a3) >0,
then index (A4, (0,0,0)) = 0 is always obtained without respect to the
particular choice of e-perturbation, since A;(d3A + ag) > 0 or A\ (d;A +
a;) > A (diA +a; —¢;) > 0 hold for : =1 or 2.

LEMMA 8. Assume that one of A\{(diA + a1 — ¢1), M(d2A + a3 — ¢2)
and A1(dsA + a3) is positive. Then index(A, (0,0,0)) = 0.

PRrOOF. If we show index(A, (0,0,0)) = 0 which is independent of
€, it’s done by the above observation. W oo = W and S0 =
{(0,0,0)} can be obtained easily. Define

Loy := AL(0,0,0) = (D™1)(6(0,0,0))G'(0,0,0)

&z 0 0 a1 + Pdy 0 0
=0 £ 0](-a+P)! 0 ag + Pdy 0 :
0 o L 0 0 a3 + Pds

d3
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Without loss of generality, suppose that A1(d1A + a; — ¢1) > 0. First,
assume that A\ (d;A + a;) # 0 for i =2, 3.

Claim 1 : I — Ly is invertible on W(O,O,O)-

Proof of Claim 1 : If Lo(¢a, ¢2,¢3)T = (¢1,P2,¢3) € W, then
—diA(]ﬁi = aicﬁi holds for i = 1,2,3. Since [¢7) #_d,)\l(——A) for 1 = 1,2,3,
¢; = 0 for all 2. Hence I — Ly is invertible on W g o o).

Claim 2 : Ly has property «.

Proof of Claim 2 : Since A\(di1A +a1) > 0, r[d—ll(—A + P)~Y(a1 +
Pd;)) > 1 by Lemma 3. So Krein-Rutman theorem implies that r[dl—l(—A
+P)7 (a1 + Pdy)] is an eigenvalue of dl—l(——A + P)"Y(ay + Pdy)I and the
corresponding eigenfunction ¢ exists in K. If ty = T L

(-A+P)~1(a1+Pdy)]
is taken, then (¢,0,0) € W\{(0,0,0)} and (#,0,0)7 — toLo(4,0,0)T =
(0,0,0). Hence £y has property a. Therefore index(A,, (0,0,0)) =0 by
Theorem 5.

Next, consider that Aj(d;A + a;) = 0 for ¢ = 2 or 3. When only
one of \(d;A + a;) for i = 2,3 is zero, the proof is so similar to the
case that two of them are zero. Thus we deal with only the latter case:
M(d;A 4+ a;) =0 for i = 2,3. For p € [0, 1], we define a homotopy

AE,I-L (U’a v, ’lU)

u(a1 — u — c1gpegz) + Pldy + Bo)u
= D_l(_A+P)—1 v(a’Q _ru’_v_’-mlu—}—Z—f—s v+$+s)+Pd2’U

w(az — @ — w+mzv+”—l—ug) + Pdsw

It is easy to see that (0,0,0) is a fixed point of A, , for all u € [0,1]
and A, = A.o. Since \i(d;A + a; — p) < 0 for p € (0,1], we have
index(Ae u, (0,0,0)) = 0 as in the first part of this proof. Finally, the
homotopy invariance property of index concludes index(Ae, (0,0,0)) =
index (A, (0,0,0)) = 0. O

LEMMA 9. Assume that A\j(diA +aq) > 0. If one of A\j(deA + a +
my — cg) and A1(d3A + ag) is positive, then index(A, (ug,0,0)) = 0.

PROOF. 1t is easily seen that W ,, 00y = Cp(Q) @K &K and Sy, 0,0)
=Cp(02) & {0} & {0}.
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As in Lemma 8, the index value can not be calculated directly. So
we introduce the p-perturbation A, of A, where
'AP (U, v, UI)
u(ar —u — c1535) + Pldi + Bv)u
:D_l(—A—i—P)_l v(ag—v—}-mluiv 020+w+p)+Pd2’U

w(az — w + my eruH_p) + Pdsw

So one can get the Fréchet derivative of A, at (u,v,w) = (ug,0,0):
Lug = A)(u9,0,0) = (D7) (G(uo,0,0))G' (u, 0,0)
-1

di Bup 0 oy —c1 0
=10 do 0} (~A+P)'{0 a 0],
0 0 dj 0 0 a3

where a7 1= a1 — 2ug + Pd1, a9 := ag + m1 + Pds and a3 := az + Pds,
since (D~1)(G(uo,0,0)) = (D7) (D(uo,0,0)) = (D'(ug,0,0))~! holds
from the inverse function theorem.

The above p-perturbation is possible under A; (deA+ag+m;—c2) > 0
or A1(dsA + a3) > 0. First, assume that A1(deA + ag +m1 —c2) > 0.
Note that Al(dlA + a] — 2'&0) < /\1(d1A + a; — UO) =0 and Al(dgA +
as +my) > A(d2A + a2 + my —c2) > 0 by Lemma 1. Then since
one of Al(dlA + a1 — 2UQ), Al(dzA + asz + ml) and )\1(d3A + a3) is
positive, index(A,, (up,0,0)) = 0 can be obtained as in Lemma 8 using
a perturbation once again when A\;(dsA + a3) = 0, so we omit it.

If A\1(d3A + a3) > 0 holds, we can have also the desired result, sym-
metrically. Hence index(A, (ug, 0,0)) = 0. O

LEMMA 10. Assume that A1(d2A+ag) > 0. If one of A1 (A(dy+Buvo)+
a1 —c1) and A1 (d3A + a3 +ms2) is positive, then index(A, (0,vg,0)) = 0.

PROOF. Since A is Fréchet differentiable at (u,v,w) = (0,vg, 0), we
do not need any perturbation. Note that
-1

di+pvy 0 0
A/(O,U(),O) = 0 d2 0 g,(o,'()o,O)
0 0 ds
di+pfuw 0 0\ @ 0 0
= 0 dy O (—A—I—P)_1 mip Qg —c2),
0 0 ds 0 0 a3

where @ = a1 — ¢1 + P{d1 + Pw), a2 := a2 — 2vyp + Pdp and a3 :=
a3 +mo + Pds. The remains are so similar to the proof of Lemma 9. O
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When wy exists (i.e., A1(dsA + a3z) > 0), another perturbation is
needed to calculate index value at (0,0, wp):

Ae(u, v, w)

ulay —u—cy u+‘1’)+€) + P(d1 + fv)u

=D H-A+P) (e —v+ M e — C2yp) T Pdav

w(as — w+m2viw) + Pdaw

Here A\ (d1A 4+ a1 — 1) > 0 or Ai(d2A + az — ¢2) > 0 is necessary for a
well-definedness of index(A,, (0,0, wy)). The proof will be omitted since
it is similar to the one of Lemma 9. So we have the following lemma.

LEMMA 11. Assume that A\{(d3A+a3) > 0. If one of A (d1A+a;1—cy)
and \1(d2A + ay — ¢9) is positive, then index(A, (0,0, wp)) = 0.

We use the following notations in the next lemmas. It’s for semi-
tirivial solutions when exactly one of the species is absent.

For sufficient small 4,

(i) No(p) :={2€ Cp(Q): 0< z < pon Q};

(if) D1(8) := N(6) ® No(Q) & No(Q);

(i) D3(6) := No(Q) & No(Q) & N(9).

The slices D1(6) and D3(6) in D¢ contain all fixed points of A of the
form (0,v,w) and (u,v,0), respectively. Also, Dy(§) can be defined in a
similar way. However, D2(d) does not have to be considered since there
is no positive semi-trivial solution of the form (u,0,w) for u,w > 0. In
the case of v = 0, it is easy to show that w = 0 by a strong maximum
principle.

Next lemmas are the calculation for the index value of A in the slices
defined in the above.

LEMMA 12. Assume that A\ (A(d1+Bv.)+a1—c1) > 0 and A1 (d2A+
ay — cg) > 0, where v, is an unique positive solution of the equation:

—dgA’U = ’U(az — Cy — ’U) in Q,
v=0 on 0f).

If \1(d3A + a3 + m2) > 0, then index(A, D3(d)) = 0.
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ProoF. For #1,0, € [0,1], consider the compact operator 291,92 :
Dy — W via

Ag, 6, (u, v, w)

w(ar — e ~u+abigiy) + Pldi + Bu)u
:D—l(—A+P)-1 (a2_c2‘v+m192u+v+Czezv+w)+Pd2’U
w(az —w +m2v+w) + Pdsw

If the operator A\gl,gz has no fixed points on dD3(8), then index(A,
D3(8)) = index(Ag p, D3(5)) holds by homotopy invariance of index.

Claim 1 : The operator A01 92,1 has no fixed points on 9D3(9).

Proof of Claim 1 : Suppose that this claim is not true. Then for
{61} and {62,} € [0,1], there are the sequences {6,} and fixed points
{(un, vn,wn)} of -;1\91,71,02," such that (uy,, vn,ws) € 8D3(y) and 6, — 0.
By the choice of @, w, — 0 but w, £ 0 as §, — 0. Note that for
02 € [0,1], v, > v,. Hence A1(dsA+ag —wp+ wmfg ) > Ai(dsA+as—

W, + 522%) — A (d3A + a3 + mg) > 0 since w, — 0 as 6, — 0. So for

a sufficient large n, A1(dzA + a3 —wn + 7-272-) > 0. It’s a contradiction

to A1 (d3A + a3 — wp, + ﬁ%) =0 from Lemma 2.

Claim 2 : index(Ay, D3(6)) =0

Proof of Claim 2 : For (u,v,w) € D3(d), f/l\o,o(u,v,w) = (u,v,w)
gives that u = u., v = v, and ||w|| < §, where u, is the unique positive
solution of (2) with d(z) = di + Pfvs and f(z,¢) = a1 — ¢1 — u. Here
w = 0 follows from the choice of § > 0. Hence ./21\07(),1 has only one fixed
point in D3(8): (Ux, Vs, 0).

Thus index(.;l\g,o,Dg(é)) = index(.Zo,O, (ux, Ux,0)). Observe that the
Fréchet derivative of .Zt\o,o at (Ux, Vs, 0) is

di +Bu. Bue 0\ 7 L PBu. 0
0 d 0] (-A+P)' 0 L 0 :
0 0 ds 0 0 a3+ mo+ Pd;

where L1 = a1—c1—2u«+P(d1+0v) and Loy = ag—co—2v,+Pds. Note
that )\1(d2A+a2‘02—2’U*) < )\1(d2A+02—02—’U*) =0, )\1(A(d1'+ﬂv*)+
a3 —¢1 — 2ux) < A (A(d1 + Bos) + a1 — ¢1 — uy) = 0 follow from Lemma
2 and the given assumption. In a result, A\j(d2A + as — co — 2v.) < 0,
M(A(dy + Bus) + a1 — 1 — 2uy) < 0 and Aj(dsA + ag + mz) > 0 yield
that index(.//l\o,o,l, (us, U, 0)) =0 as in Lemma 9. O
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LEMMA 13. Assume that \1(A(dy + B(a2 +m1)) + a1 —c1) > 0 and
)\1(—d2A —m1 + Cz) <ag < /\1(—-d2A). If)\l(dgA + a3z + mQ) > 0, then
index(.A, D3(d)) = 0.

ProOOF. The proof is similar to the one of Lemma 12, so we just
sketch the proof. For 61,0, € [0,1], consider the compact operator
Ag, 0, : Do — W via

"2{01,92 (u,v,w) =

)+ P(d1 + fv)u

u(ay —c1 —u+abiz
+ co-=— Lbov. ) + Pdov

D_l(—A—i-P)_l 'U( 2~cz+m1—v~m16

utv v+w
w(as ——w—l—mzv+w) + Pdsw

As in the above lemma, note that for fy, € [0,1], v, < a2 + my
from Lemma 6. Furthermore, for 6;, € [0,1], it follows that u, >
where ® is the unique positive solution of the equation:

{ ~AU = UGt - %) mn®

.
di+8(az+my)’

U=0 ~ on 9.
The existence of ® comes from the assumption A\ (A(dy + B(ag +m1)) +
a1 — ¢1) > 0 and Theorem 4. The fact of w, > EI+—,G(§2—+m_1) follows

from comparison argument for elliptic problem, since if we denote U,, =
(dl + 6 Un)unv

— 1 Un a] —C Un
> > n - 59 /-
~AU > Un (g5 = e ) 2 Un (5 e d%>

Using these results, one can obtain that v, > ¥ from \i(d2A + az +
my — cg) > 0, where VU is a unique positive solution of equation:

{ —dAV =V(apg+mi —ca—V —mi——5>——) inQ,
1%

d1+8(ag+my) v

As in Lemma 12, it can be shown that the operator .Zgl’gz has no fixed
points on 9D3(d) by getting a contradiction as n — oco. Moreover, ./Zlvo,o
has only one fixed point in D3(6): (ug, vy, 0), where uy and vy are unique
positive solutions of (2) with (d(z), f(z,)) = (d2, az+m1 —c2—v) and
(d(z), f(z,¢)) = (d1+Pvy, a1—c1—u), respectively. The remained part
is routine, since A1 (dsA+az+ma) > 0, A (A(d1+Pvy)+ar—c1—2uy) <0
and A1(deA + a2 +m1 — ¢ -—ZUﬁ) < 0. |

LEMMA 14. Assume that \1(d2A + a2 —c2) > 0 and A(d3sA + a3 +
ma) > 0. If \1(A(dy + Bvg) + a1 — ¢1) > 0, then index(A, D1(9)) = 0.
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PROOF. We sketch the proof. For 6,605 € [0,1], introduce the fol-
lowing operator Ag, g, : Dg — W via

“7192,03 (’LL, v, w)

u(a1 —u — c13%;) + Pdi + Bo)u
=D (=A+P)7 | v(ag — v+ mubaly — cabaiiy) + Pdov

w(a3 +mo —w — m293v—ll—uw) + Pdsw

Note that as in Lemma 12, for 65, € [0,1], v, > v,, where v, was
defined in Lemma 12. As n — oo (i.e., 6 — 0), up — 0 gives that for a
large n, v, < vg since ag — vy, + m192,nu—7ﬁﬁ; — 02027,11):{%: < ag—v,+
m192,nﬁ——ﬁ}: — ag — v,. Thus for a large n, A\;(A(dy + Bvn) + a1 — up —
c u::vn) > M (A(d1+Pvo)+a1—c1—up) — M(A(d1+Pv)+ar—c1) >0
follows. Hence for a sufficient large n, one can get a contradiction, so
that the operator —A_gz’gs has no fixed points on 8D1(8). Moreover, Ag o
has only one fixed point in D;(8): (0, v, ws), where w, is the unique
positive solution of (2) with d(z) = d3 and f(z,¢) = a3 + mg — w. The
remains can be shown easily, since A\ (A(dy + Bvg) + a1 —¢1) >0. O

Now we can get sufficient conditions which give the positive coexis-
tence for system (1), using Lemma 7-14.

THEOREM 15. If one of the following principal eigenvalue conditions,
(i) and (ii), is satisfied, then there is a positive solution of (1).

(i) M(A(d1+Bvo) +a1—c1) > 0, Mi(deA+az—c2) > 0 and A\ (dsA+
az +mz) > 0;

(ii) )\1(A(d1 + ,6(02 + mg)) +a; — Cl) > 0, Al(—dgA —my + Cg) <
ag < A1(—doA) and A\ (d3A + a3 + ma) > 0.

PRrOOF. (i) First, note that the existence of positive semi-trivial solu-
tions of the form (u,v,0), (0,v,w) and (0,0, wp) is not known. However
these semi-trivial solutions do not affect our index calculation, regardless
of whether these exist or not. The reason is because the assumptions
give that index(A, D3(8)) = index(A, D1(6)) = index(A, (0,0,wp)) =0
even if all these semi-trivial solutions exist. Hence in spite of introduc-
ing above semi-trivial solutions in calculating index value, one get the
following;:

index(A, Dg) — index(A4, (0,0, 0)) — index(A, (uo,0,0))
~ index(A, (0, v, 0)) — index (A, (0,0,wp)) — index (A, D1(d))
— index(A, D3(6))
=1-0-0-0-0-0-0=1#0.
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Here we use the comparison property of principal eigenvalue to get the
following inequalities:

)q(dlA-}—al), )\1(A(d1 +ﬂ’U*) +a;— Cl> > At (A(dl —|—ﬂ’l)0) +a; — Cl) > 0;
Al(dQA + az), /\1(d2A + a2 +mg — C2> > /\1(d2A + a9 — (22) > 0.
(i1) The assumption az < Aj(—d2A) gives the non-existence of semi-
trivial solutions of form (0,vy,0) and (0,v,w). Thus vg and D1(6) do

not need to be considered in this case. Hence using the additivity of
index,

index(A, Do) — index(A, (0,0,0)) — index(A, (ug,0,0))
— index(A, (0,0,wp)) — index(A, D3(6)) =1-0-0-0-0=1#0.
a

4. Non-existence theorem for food chain model

In this section, we investigate the non-existence conditions of positive
solutions for system (1).

THEOREM 16. (i) If a; < A(—d1A), then there is no positive so-
lutions of (1). In addition, if ag +my < M(—d2A) and a3 + my <
A1(—d3A), then there is no nonnegative and nonzero solutions of (1).

(ii) If A (d2A+ag — c2) > 0 and A\ (A(di 4 Bu«) +a1) < 0, then there
is no positive solutions of (1). In details, the prey u can not survive.

Proor. Using Lemma 2 and the comparison property of eigenvalue,
each case can be shown by introducing a contradiction if there is a
positive solution (u,v,w) of (1).

(i) This case can be proved with ease. So we omit it.

(ii) One knows that A;(d2A + a2 — ¢2) > 0 guarantees the existence
of v,. Moreover, v > v, and v, does not depend on cross-diffusion 3.
Thus from the following inequality

0=MAd+Pv)+a1—u—0c1 v

u+v) < )\1(A(d1 +,8'U*) +a1) <0,

a contradiction is induced. |

REMARK 1. Distinction of Ay (A(di1+Bvg)+a1—ci) > 0 and A\ (A(di+
Bui) +a1) <0 in Theorem 15 (i) and Theorem 16 (ii) should be pointed
out in view of biological implication : if the middle predator v can survive
alone (i.e., A\;(d2A + ag — ¢2) > 0), a suflicient small cross-diffusion 3
helps to create a positive solution of our food-chain model (1). On the
other hand, sufficient large 3 makes the prey species u become extinct.
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