DOI QR코드

DOI QR Code

GENERALIZED NONLINEAR MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

  • Lee, Byung-Soo (Department of Mathematics Kyungsung University) ;
  • Khan M. Firdosh (Department of Mathematics Aligarh Muslim University) ;
  • Salahuddin Salahuddin (Department of Mathematics Aligarh Muslim University)
  • Published : 2006.10.31

Abstract

In this paper, we introduce a new class of generalized nonlinear multivalued mixed quasi-variational-like inequalities and prove the existence and uniqueness of solutions for the class of generalized nonlinear multivalued mixed quasi-variational-like inequalities in reflexive Banach spaces using Fan-KKM Theorem.

Keywords

References

  1. J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, Inc., New York, 1984
  2. F. E. Browder, On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A 56 (1966), 419-425
  3. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228 https://doi.org/10.1016/0022-247X(67)90085-6
  4. Y. J. Cho, Y. P. Fang, N. J. Huang, and K. H. Kim, Generalized set valued strongly nonlinear variational inequalities in Banach spaces, J. Korean Math. Soc. 40 (2003), no. 2, 195-205 https://doi.org/10.4134/JKMS.2003.40.2.195
  5. K. Fan, Some properties of convex sets related to fixed points theorem, Math. Annal. 266 (1984), 519-537 https://doi.org/10.1007/BF01458545
  6. Y. P. Fang, Y. J. Cho, N. J. Huang, and S. M. Kang, Generalized nonlinear quasivariational-like inequalities for set valued mappings in Banach spaces, Math. Inequal. Appl. 6 (2003), no. 2, 331-337
  7. F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Pleum, New York, 1995
  8. P. T. Harker and J. S. Pang, Finite dimensional variational inequality and nonlinear complementarity problems; A survey of theory, algorithms and applications, Math. Program. 48 (1990), 161-220 https://doi.org/10.1007/BF01582255
  9. N. J. Huang and C. X. Deng, Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. Math. Anal. Appl. 256 (2001), 345-359 https://doi.org/10.1006/jmaa.2000.6988
  10. N. J. Huang, Y. P. Fang, and Y.J. Cho, A new class of generalized nonlinear mixed quasi-variational inequalities in Banach spaces, Math. Inequal. Appl. 6 (2003), no. 1, 125-132
  11. N. J. Huang, Y. P. Liu, Y. Y. Tang, and M. R. Bai, On the generalized setvalued strongly nonlinear implicit variational inequalities, Comput. Math. Appl. 37 (1999), no. 10, 29-36 https://doi.org/10.1016/S0898-1221(99)00123-6
  12. P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhauser, Boston, 1995
  13. J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, J. Math. Anal. Appl. 124 (1987), 73-81 https://doi.org/10.1016/0022-247X(87)90025-4
  14. R. U. Verma, Nonlinear variational inequalities on convex subsets of Banach spaces, Appl. Math. Lett. 10 (1997), no. 4, 25-27 https://doi.org/10.1016/S0893-9659(97)00054-2
  15. R. U. Verma, Generalized pseudo-contractions and nonlinear variational inequalities, Publ. Math. Debrecen 53 (1998), no. 1-2, 23-28
  16. R. U. Verma, On monotone nonlinear variational inequality problems, Comment Math. Univ. Carolinae 39 (1998), no. 1, 91-98
  17. G. X. Z. Yuan, KKM Theory and Applications, Marcel Dekker, New York, 1999
  18. E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1988