References
- J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, Inc., New York, 1984
- F. E. Browder, On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A 56 (1966), 419-425
- F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228 https://doi.org/10.1016/0022-247X(67)90085-6
- Y. J. Cho, Y. P. Fang, N. J. Huang, and K. H. Kim, Generalized set valued strongly nonlinear variational inequalities in Banach spaces, J. Korean Math. Soc. 40 (2003), no. 2, 195-205 https://doi.org/10.4134/JKMS.2003.40.2.195
- K. Fan, Some properties of convex sets related to fixed points theorem, Math. Annal. 266 (1984), 519-537 https://doi.org/10.1007/BF01458545
- Y. P. Fang, Y. J. Cho, N. J. Huang, and S. M. Kang, Generalized nonlinear quasivariational-like inequalities for set valued mappings in Banach spaces, Math. Inequal. Appl. 6 (2003), no. 2, 331-337
- F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Pleum, New York, 1995
- P. T. Harker and J. S. Pang, Finite dimensional variational inequality and nonlinear complementarity problems; A survey of theory, algorithms and applications, Math. Program. 48 (1990), 161-220 https://doi.org/10.1007/BF01582255
- N. J. Huang and C. X. Deng, Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities, J. Math. Anal. Appl. 256 (2001), 345-359 https://doi.org/10.1006/jmaa.2000.6988
- N. J. Huang, Y. P. Fang, and Y.J. Cho, A new class of generalized nonlinear mixed quasi-variational inequalities in Banach spaces, Math. Inequal. Appl. 6 (2003), no. 1, 125-132
- N. J. Huang, Y. P. Liu, Y. Y. Tang, and M. R. Bai, On the generalized setvalued strongly nonlinear implicit variational inequalities, Comput. Math. Appl. 37 (1999), no. 10, 29-36 https://doi.org/10.1016/S0898-1221(99)00123-6
- P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhauser, Boston, 1995
- J. Parida and A. Sen, A variational-like inequality for multifunctions with applications, J. Math. Anal. Appl. 124 (1987), 73-81 https://doi.org/10.1016/0022-247X(87)90025-4
- R. U. Verma, Nonlinear variational inequalities on convex subsets of Banach spaces, Appl. Math. Lett. 10 (1997), no. 4, 25-27 https://doi.org/10.1016/S0893-9659(97)00054-2
- R. U. Verma, Generalized pseudo-contractions and nonlinear variational inequalities, Publ. Math. Debrecen 53 (1998), no. 1-2, 23-28
- R. U. Verma, On monotone nonlinear variational inequality problems, Comment Math. Univ. Carolinae 39 (1998), no. 1, 91-98
- G. X. Z. Yuan, KKM Theory and Applications, Marcel Dekker, New York, 1999
- E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer-Verlag, New York, 1988