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ROUGHNESS IN SUBTRACTION ALGEBRAS

SUN SHIN AHN, YOUNG BAE JUN, AND KYOUNG JA LEE

ABSTRACT. As a generalization of ideals in subtraction algebras,
the notion of rough ideals is discussed.

1. Introduction

B. M. Schein [10] considered systems of the form (®;o0,\), where ®
is a set of functions closed under the composition “o” of functions (and
hence (®;0) is a function semigroup) and the set theoretic subtraction
“\” (and hence (®;\) is a subtraction algebra in the sense of [1]). He
proved that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. B. Zelinka [11] discussed a problem
proposed by B. M. Schein concerning the structure of multiplication in a
subtraction semigroup. He solved the problem for subtraction algebras
of a special type, called the atomic subtraction algebras. Y. B. Jun et al.
[4] introduced the notion of ideals in subtraction algebras and discussed
characterization of ideals. In [3], Y. B. Jun and H. S. Kim established
the ideal generated by a set, and discussed related results. Y. B. Jun and
K. H. Kim [5] introduced the notion of prime and irreducible ideals of a
subtraction algebra, and gave a characterization of a prime ideal. They
also provided a condition for an ideal to be a prime/irreducible ideal.
In 1982, Pawlak introduced the concept of a rough set (see [8]). This
concept is fundamental for the examination of granularity in knowledge.
It is a concept which has many applications in data analysis (see [9]).
Rough set theory is applied to semigroups and groups (see [6, 7]). In
this paper, we apply the rough set theory to subtraction algebras, and
we introduce the notion of upper/lower rough subalgebras/ideals which
is an extended notion of subalgebras/ideals in a subtraction algebra.
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2. Preliminaries

By a subtraction algebra we mean an algebra (X;—) with a sin-
gle binary operation “—” that satisfies the following identities: for any
x,y,z € X,

(1) z—(y—z) ==

(82) z—(z—y) =y —(y — z);

(83) (z—y)—2z=(@—2) -y

The last identity permits us to omit parentheses in expressions of the
form (z — y) — 2. The subtraction determines an order relation on X:
a<b < a—b=0, where 0 = a — a is an element that does not depend
on the choice of @ € X. The ordered set (X; <) is a semi-Boolean algebra
in the sense of [1], that is, it is a meet semilattice with zero 0 in which
every interval [0,a] is a Boolean algebra with respect to the induced
order. Here a A b= a — (a — b); the complement of an element b € [0, a]
is a — b; and if b, ¢ € [0, a], then

bVe = (VAd)Y =a—((a—b)A(a-c))
a—((a—b)—((a—1b)—(a—c))).
In a subtraction algebra, the following are true (see [4, 5]):

al) (z—y)—y=z—y.
a2) x—0=zand 0 —z = 0.

Il

a3) (x—y) —z=0.
Jz—(z—y) <y

ad) (z—y)—(y—z)=z—y.

ab) z—(r—(z—y)=z—y.

al) (z—y)—(z—y)<z—2z
(a8) z <y if and only if x = y — w for some w € X.
(a9) x <yimpliessz —2<y—zand z—y < z—x forall z € X.
(al0) z,y < zimpliesz —y =z A (z — y).
(all) (zAy)—(zAz)<zA(y—2).
A nonempty subset S of a subtraction algebra X is called a subalgebra
of X if ¢ —y € S whenever z,y € S.
A nonempty subset A of a subtraction algebra X is called an ideal of
X, denoted by A < X, if it satisfies

e0cA
o Ve X)(Vye A)(z—yc A=z A).

Note that every ideal of a subtraction algebra X is a subalgebra of X.
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LEmMMA 2.1. (5] An ideal A of a subtraction algebra X has the fol-
lowing property:

Vee X)(Vy e Az <y = z € A).

3. Rough sets in subtraction algebras

In what follows let X denote a subtraction algebra unless otherwise
specified.

An equivalence relation p on X is called a congruence relation on X
if whenever (z,y), (u,v) € p then (z — u, y — v) € p. We denote by [a],
the p-congruence class containing the element a € X. Let X/p denote
the set of all p-congruence classes on X, i.e., X/p :={[a], | a € X}. For
any [al,, 4], € X/p, if we define [z, — [y], = [z — yl, then (X/p,~)
is a subtraction algebra. Let p be an equivalence relation on X and let
P (X) denote the power set of X and £*(X) = £(X) \ {0}. For all
z € X, let [z], denote the equivalence class of = with respect to p. Define
the functions p., p* : Z(X) — P(X) as follows: VS € #(X),

po(S) = {z € X | [}, € S} and p*(8) = {z € X | [z],n 5 #0}.

ScX p«(S)C S

p«(S) is called the p-lower approzimation of S while p*(S) is called the
p-upper approzimation of S. For a nonempty subset S of X,

p(S) = (p«(S), p*(5))
is called a rough set with respect to p of Z(X)x P (X) if p«(S) # p*(5).
A subset S of X is said to be definable if p.(S) = p*(S). The pair (X, p)
is called an approzimation space.
The following property is useful for our research (cf. [§]).

ProprOSITION 3.1. Let p and A be congruence relations on X. Then
the following assertions are true.

(1) (VF € 2%(X)) (p«(F) C F C p*(F)),

(2) (VF,G € 2*(X)) (p"(F UG) = p*(F) U p*(G)),
(3) (VF,G € 2*(X)) (p«(F N G) = p«(F) N pu(G)),
4) (VF,G e 2*(X)) (F € G = p.(F) C p(G)),
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( (X)) (
(VF,G € Z2*(X)) (p«(F) U ps(G
(VE,G € 2*(X)) (0*(FNG) C N
(VF € 2%(X)) (p S A = M(F) Cpu(F), p*(F) C A (F)).

PROOF. Straightforward. O

VE,G € 2*(X)) (FC G = p*(F) C p*(G))

COROLLARY 3.2. If p and A are congruence relations on X, then
(i) (VF € (X)) ((pN A)"(F) C p*(F) D A™(F)).
(i) (VF € 2%(X)) (p(F) N A(F) € (p N A)(F)).

ProOF. It follows immediately from Proposition 3.1. O
For any F,G € 2*(X), we define F —G:={a—-bla € F, be G}.
THEOREM 3.3. If p is a congruence relation on X, then

(VF,G € (X)) (p"(F) = p*(G) C p*(F = G)).

PrROOF. Let ¢ € p*(F) — p*(G). Then there exist a € p*(F) and
b € p*(G) such that ¢ = a—b. It follows that [a],NF # @ and [b],NG # 0
so that z € [a],N F and y € [b], NG for some z,y € X. Hence z — y €
lalp—bl, =[a—bl,and z—y € F—G, that is,z—y € [a—b],N(F - G).
Thus c=a —b € p*(F — G), and so p*(F) — p*(G) C p*(F — G). O

THEOREM 3.4. If p is a congruence relation on X, then
(VE,G € Z%(X)) (p«(F = G) 0 = pu(F) = pu(G) C pu(F = G)).

PROOF. Let ¢ € p(F) — p«(G). Then ¢ = a — b for some a € p,(F)
and b € p.(G). Thus we get [a], C F and [b], C G. It follows that

a=bl,=lal, -, CF-G
so that ¢ = a — b € p.(F — G). Therefore the result is valid. O

The following example shows the condition that p.(F — G) # Q) in
Theorem 3.4 is necessary.

EXAMPLE 3.5. Let X = {0,a,b,c} be a subtraction algebra with the
following Cayley table:

o o e Of)
o o QOIC
oot OO R
e O 8 Ol
OO O On
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Let p be a congruence relation on X such that {0,a}, {b}, and {c}
are all p-congruences of X. Taking F = {b,c} and G = {c}, we have
F—G={0}, p«(F —~G) =0, pu(F) = {b,c}, p«(G) = {c}, and p.(F) —
p«(G) = {0}.

For any congruence relation p on X, we note that

o (VF € 27(X)) (p«(F) C F),

o (VF,G € *(X)) (F CG = pu(F) C pu(@)),

o (VF € Z*(X)) (p«(p(F)) = ps(F)),
which means that p, is an interior operator on X. This operation induces
a topology Z on X such that

FeJ < p.(F)=F.

LEMMA 3.6. For any congruence relation p on X, p* is a closure
operator on the topological space (X, 7).

PROOF. For any F' € 2*(X) we have
z€p"(F) & [, NF £ 06 [al, & F° & a d pu(F) & 5 € (0u(F)),
that is, p*(F) = (p«(F*°))¢, which completes the proof. O

LEMMA 3.7. For any congruence relation p on X, we have
(i) (VF € 2(X)) (ps(F) = F <= p"(F*) = F°),
(i) (VF € (X)) (pu(F) = F <= p"(F) = F).

PROOF. Straightforward. a
Based on the above two lemmas we have the following result.

THEOREM 3.8. For any F C X and a congruence relation p on X,
the following assertions are equivalent.

(i) F is definable with respect to p.
(ii) F is open in the topological space (X, 7).
(iii) F is closed in the topological space (X, T).

According to [7], we say that an open set F' of X is said to be free
in an approximation space (X, p) if ¢ p*(F'\ {z}) for all z € X. Since
p*(F\{z}) = (p«((F\ {z})°))", a nonempty subset F' of X is free if and
only if z € p«(F°U {z}), i.e., if and only if [z], C F°U {x} for every
x € F. Thus for a free subset F and any (z,y) € pN (F x F) we have
y € F, which together with y € [z], € F°U {z} implies that y = =.
Therefore pN (F x F) = {(a,a) | a € F}. Conversely, let

pN(F x F)={(a,a) |a € F}
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and let y be an arbitrary element of [z],. If y € F, then y = z, ie,
ye{x} CFU{z}. Ify ¢ F, then y € F°* C F°U {z}. Thus, in each
case [z], € F°U {z}, which means that F is free. Consequently, we
obtain the following characterization of free subsets.

THEOREM 3.9. F C X is free if and only if pN (F x F) = {(a,a) |
a € F}.

COROLLARY 3.10. If X is free, then any subset of X is free.

4. Roughness of ideals

Let A be an ideal of X. Define a relation # on X by
Ve,ye X)((z,y) e Z & x—ye A y—z <A

Then £ is an equivalence relation on X related to an ideal A of X.
Moreover Z satisfies

(Vz,y,u,v € X) ((z,y) € Z, (u,v) € Z = (z—u,y —v) € Z).

Hence Z is a congruence relation on X. Let A, denote the equivalence
class of x with respect to the equivalence relation Z related to the ideal
A of X, and X/A denote the collection of all equivalence classes, that is,
X/A={Az |z € X} Then Ag = A. If A, © Ay is defined as the class
containing x — y, that is, A, © Ay = Ay, then it is easy to verify that
(X/A, —, Ap) is a subtraction algebra. Let Z be an equivalence relation
on X related to an ideal A of X. For any nonempty subset S of X,
the lower and upper approximations of S are denoted by Z(A;S) and
Z(A; S) respectively, that is,

RZ(A;S)={zx € X|A; CS} and Z(A;S) ={z € X | A, NS # B}.

If A= S, then Z(4;S) and %Z(A;S) are denoted by Z(A) and Z(A),
respectively.

EXAMPLE 4.1. (1) Let X = {0, a,b,c} be a set with the Cayley table
as follows:

O o e O
O SR OO0
O oo O e
O OoO8 O/co
o o OO0
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Then (X, —,0) is a subtraction algebra. Consider an ideal A = {0,a}
of X and let Z be an equivalence relation on X related to A. Then
Ap = A, = A, Ay = {b}, and A, = {c}. Hence

o Z(A;{0,b}) = {b} = Z(A;{b}), © Z(A;{0}) =0 =2Z(4;{a}),

o Z(A;{0,c}) ={c} = Z(A;{c}), ® Z(4;{0,a,c})={0,0,c}<X,

* Z(A;{0,a,b}) ={0,a,b} <X,  © Z(A;{0,b,c}) = {b,c},

o Z(4;{0,a}) = {0,a} < X, o Z(4;{0,b}) = {0,0,} 4 X,
Z(A;{0,c}) = {0,a,c} < X, e Z(A;{0,a}) = A< X,
Z(A;{a}) = A< X, o Z(4;{b}) = {b}.

(2) Let X = {0,a,b,c,d} be a subtraction algebra with the Cayley
table as follows:
-0 a b ¢ d
0/0 00 0O
ala 0 a 0 a
bbb 0 0 b
clc b a 0 ¢
d|d d d d 0

Consider A = {0,b,d} < X and let #Z be an equivalence relation on X
related to A. Then the equivalence classes are as follows: Ag=A=A4 =
A, A, = {a,c,d}, and A. = {a,c}. Thus

L4 ‘%(A {Oa a}) = (07 L4 Z(A’ {07 b, C}) = (2)7
R(A;{0,a,d}) =0, * Z(4;{0,a,c}) = {c},
Z(A;{0,b,d}) = A< X, o Z(A;{0,a,b,c}) ={c},

Q(A {0,b,c,d}) =A< X, % A;{0,a}) =X,

e Z(A;{0,b})) =A< X, e Z(A;{0,c}) = X,

. @(A {0,d}) ={0,a,b,d}, . ?(A; {0,a,d}) =X

e Z(A;{b}) =A< X, o Z(A;{c}) = {a,c}

e Z(A;{d}) =A< X.

In Example 4.1, we know that there exists a non-ideal U of X such
that Z(A;U) < X; and there exists a non-ideal V' of X such that
RZ(A; VY X, where Z is an equivalence relation on X related to A< X.

PROPOSITION 4.2. Let Z and 2 be equivalence relations on X related
to ideals A and B of X, respectively. If A C B, then Z C 2.

PrROOF. If (z,y) € Z,thenz—y € AC Bandy—xz € A C B. Hence
(z,y) € 2, and so Z C 2. O

PROPOSITION 4.3. Let #Z be an equivalence relation on X related to
an ideal A of X. Then
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(1) (VS e Z(X)) (Z(4;S) €S C%(4;9)),

(2) (V5,7 € 2(X)) (B(A; SUT) = F(A: §) UT(AT)),

(3) (V8,T € (X)) (Z(A;SNT) = %Z(A;S) NZ(A;T)),

(4) (VST € P(X) (S C T > &(AS) C AAT), B(4S) C
Z(A;T)),

(5) (VS,T € #(X)) (Z(A;SUT) 2 Z(A;S)UZ(A;T)),

(6) (VS,T € #(X)) (B(A;SNT) C Z(A;S) NZ(A;T)),

related to an ideal B of X
;9) for all S € 2(X).

(7) If 2 is an equivalence relation o
and if A C B, then Z(A;S) C 2(B

’“b
><

ProoF. (1) is straightforward.
(2) For any subsets S and T of X, we have

€ A(A;SUT) A N(SUT)Y#£D
(AzNS)U (A, NT)#0
ANS#D or A,NT #0
x € R(A;S) or x € Z(A;T)
r € Z(A;S)UZ(AT),

;.S) U%(A T).
of X we have

& A, CSNT
& A, CSand A, CT

& zeX(AS) and z € Z(A;T)
-

z € Z(A;S) N R(A;T).

Hence Z(A;SNT) =2%(A; S)NZ(A;T).
(4) Let S,T € Z(X) be such that S C T. Then SNT = S and
SUT =T. It follows from (3) and (2) that

Z(A;S) = Z(A;SNT) = Z(A4;9) NZ(AT)

Tt

and hence Z(4; SUT) = %(
(3) For any subsets S and

z€RASNT)

hgh:-

and
(A T)=%(A;S5UT) = R(A; S)UZ(A; T),

which yield Z(A;S) C Z(A;T) and Z(A; S) C Z(A; T), respectively.
(5) Since SC SUT and T C SUT, it follows from (4) that

Z(A;S) CH(A;SUT) and Z(A;T) CZ(A;SUT).

Thus %(A; S) U Z(A; T) C Z(A; SUT).
(6) Since SNT C S, T, it follows from (4) that

Z(A;SNT) C R(A;S) and Z(A;SNT) C Z(A;T)
so that Z(A; SNT) C %(A; S)NZ(A;T).
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(7) If x € Z(A;S), then A, NS # 0, and so there exists a € S such
that a € A;. Hence (a,z) € %, that is,a —x € A and z —a € A. Since
A C B, it follows that a —z € B and z —a € B so that (a,2) € 2,
that is, a € B,. Therefore a € B, NS, which means z € 2(B; S). This
completes the proof. |

PROPOSITION 4.4. Let % be an equivalence relation on X related
to any ideal A of X. Then #(A;X) = X = #(A; X), that is, X is
definable.

Proor. It is straightforward. O

PROPOSITION 4.5. Let # be an equivalence relation on X related
to the trivial ideal {0} of X. Then Z({0};S) = S = %({0};S) for
every nonempty subset S of X, that is, every nonempty subset of X is
definable.

ProOF. Note that {0} = {z} for all z € X, since if a € {0}, then
(a,z) € # and hence a —x = 0 and 2 — a = 0. Tt follows that a = =.
Hence

Z({0}:5) = {a € X | {0}, S S} = §
and
Z({0};8) ={ze X |{0}.nS#0}=S5.
This completes the proof. O

REMARK 4.6. Let Z be an equivalence relation on X related to an
ideal A of X. If B is an ideal of X such that A # B, then %Z(A; B) is
not an ideal of X in general. For, consider a subtraction algebra X in
Example 4.1(2) and an equivalence relation Z on X related to the ideal
A = {0,1,2}. If we take an ideal B = {0,1,3} of X, then A # B and
Z(A; B) = {3} which is not an ideal of X.

DEFINITION 4.7. Let % be an equivalence relation on X related to
an ideal A of X. A nonempty subset S of X is called an upper (resp. a
lower) rough subalgebra/ideal of X if the upper (resp. nonempty lower)
approximation of S is a subalgebra/ideal of X. If S is both an upper
and a lower rough subalgebra/ideal of X, we say that S is a rough sub-
algebra/ideal of X. '

THEOREM 4.8. Let Z be an equivalence relation on X related to an
ideal A of X. Then every subalgebra S of X is a rough subalgebra of X.

PRrROOF. Let z,y € #(A;S). Then A, C § and A, C S. Since S is
a subalgebra of X, it follows that Ag_y = A; © Ay C Ssothat x —y €
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Z(A; S). Hence Z(A; S) is a subalgebra of X. Now if z,y € Z(4;5),
then A, NS # 0 and Ay, NS # 0, and so there exist a,b € S such that
a € Ay and b € Ay. It follows that (a,z) € #Z and (b,y) € #Z. Since
Z is a congruence relation on X, we have (a — b,z —y) € %. Hence
a—b¢€ Ay_y. Since S is a subalgebra of X, we get a — b € §, and
therefore a — b € A;_y N S, that is, A,y NS # @. This shows that
T —y € #(A;S), and consequently Z(A; S) is a subalgebra of X. This
completes the proof. U

COROLLARY 4.9. Let Z be an equivalence relation on X related to
an ideal A of X. Then Z(A) (# 0) and #(A) are subalgebras of X, that
is, A is a rough subalgebra of X.

PrOOF. It is straightforward. O

THEOREM 4.10. Let #Z be an equivalence relation on X related to an
ideal A of X. If U is an ideal of X containing A, then

(1) Z(A;U) (# 0) is an ideal of X, that is, U is a lower rough ideal of
X.

(2) Z(A;U) is an ideal of X, that is, U is an upper rough ideal of X.

ProOOF. Let U be an ideal of X containing A. Let x € Ap. Then
x € ACU, and so Ag € U. Hence 0 € Z(A;U). Let z,y € X be
such that y € Z(A;U) and z —y € #Z(A : U). Then Ay C U and
A0 Ay =A, y CU. Let a € Ay and b € Ay. Then (a,z) € Z and
(b,y) € %, which implies (a — b,z —y) € Z. Hencea —be€ A,_, CU.
Since b € Ay C U and U is an ideal, it follows that a € U, so that
Az CU. Thus z € Z(A;U). This shows that Z(A;U) is an ideal of
X, that is, U is a lower rough ideal of X. Now, obviously 0 € Z(4;U).
Let 2,y € X be such that y € #(A;U) and = —y € Z(A;U). Then
AyNU # 0 and A,y NU # 0, and so there exist a,b € U such that
a € Ay and b € A;_y. Hence (a,y) € Z and (b,z — y) € %, which
impliessy—a € ACU and (zx—y)—be A CU. Since a,b € U and
U is an ideal, we get y € U and x —y € U, hence z € U. Note that
T € Ay, thus z € A, NU, that is, A, NU # 0. Therefore z € Z(A;U),
and consequently U is an upper rough ideal of X. .

COROLLARY 4.11. Let & be an equivalence relation on X related to
an ideal A of X. Then %Z(A) (# 0) and #(A) are ideals of X, that is, A
is a rough ideal of X.

Theorem 4.10 shows that the notion of an upper (resp. a lower) rough
ideal is an extended notion of an ideal in a subtraction algebra.
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The following example shows that if A and U are ideals of X such
that A ¢ U, then Z(A;U) may not be an ideal of X.

ExaMPLE 4.12. (1) Let X = {0,a,b,c,d} be a subtraction algebra
described in Example 4.1(2). Consider two ideals A = {0,b} and U =
{0,d} of X. Then Z(A;U) = {d} which is not an ideal of X.

(2) Let X = {0,a,b,c,d} be a subtraction algebra with the Cayley
table as follows:

Qo oh O
QU O o OO

QO T O ola
QWO O Ol
QO R On
OO0 oR Ol

Consider A = {0,a,b} < X and let Z be an equivalence relation on X
related to A. Then the equivalence classes are as follows: Ay = A, =
A, = A, Ac = {c}, and Ay = {d}. Then U = {0,a,c} is an ideal of X
which does not contain A, and Z(A;U) = {c} which is not an ideal of
X.
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