DOI QR코드

DOI QR Code

ANALYSIS OF A MESHFREE METHOD FOR THE COMPRESSIBLE EULER EQUATIONS

  • Published : 2006.09.30

Abstract

Mathematical analysis is made on a mesh free method for the compressible Euler equations. In particular, the Moving Least Square Reproducing Kernel (MLSRK) method is employed for space approximation. With the backward-Euler method used for time discretization, existence of discrete solution and it's $L^2-error$ estimate are obtained under a regularity assumption of the continuous solution. The result of numerical experiment made on the biconvex airfoil is presented.

Keywords

References

  1. H. J. Choe, D. W. Kim, H. H. Kim, and Y. S. Kim, Meshless method for the stationary incompressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Series B 1 (2001), no. 4, 495-526 https://doi.org/10.3934/dcdsb.2001.1.495
  2. H. J. Choe, D. W. Kim, and Y. S. Kim, Meshfree method for the non-stationary incompressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Series B 6 (2006), no. 1, 17-39 https://doi.org/10.1066/S10014060002
  3. L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, An h - p Taylor- Garlerkin finite element method for compressible Euler equations, Comput. Methods Appl. Mech. Eng 88 (1991), no. 3, 363-396 https://doi.org/10.1016/0045-7825(91)90095-N
  4. R. A. Gingold and J.J. Monaghan, Smoothed Particle Hydrodynamics : theory and application to non-spherical stars, Mon. Not. R. Astron. Soc. 181 (1977), 275-389
  5. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equa- tions, Springer-Verlag, Berlin, 1986
  6. F. C. Gunther and W. K. Liu, Implementation of boundary conditions for mesh- less methods, Comput. Methods Appl. Mech. Engrg. 163 (1998), no. 1-4, 205- 230 https://doi.org/10.1016/S0045-7825(98)00014-0
  7. T. Kato, Quasi-linear equations of evolution with applications to partial differ- ential equations, Lecture Notes in Math. 448, Springer-Verlag, Berlin, 1975
  8. D. W. Kim and Y. S. Kim, Point collocation methods using the fast moving least- square reproducing kernel approximation, Internat. J. Numer. Methods Engrg. 56 (2003), no. 10, 1445-1464 https://doi.org/10.1002/nme.618
  9. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional Conf. Series in Appl. Math. 11, SIAM, 197
  10. S. Li and W. K. Liu, Reproducing Kernel Hierarchical Partition of Unity, Part I{Formulation and Theory, Internat. J. Numer. Methods Engrg. 45 (1999), no. 3, 251-288 https://doi.org/10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I
  11. S. Li and W. K. Liu, Reproducing Kernel Hierarchical Partition of Unity, Part II{Appli- cations, Internat. J. Numer. Methods Engrg. 45 (1999), no. 3, 289-317 https://doi.org/10.1002/(SICI)1097-0207(19990530)45:3<289::AID-NME584>3.0.CO;2-P
  12. L. D. Libersky, A. G. Petschek, T. C. Carney, J. R. Hipp, and F. A. Allahdadi, High Strain Lagrangian Hydrodynamics-a Three Dimensional SPH code for Dy- namic Material Response, J. Comput. Phys. 109 (1993), 67-75 https://doi.org/10.1006/jcph.1993.1199
  13. W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing Kernel Particle Methods, Internat. J. Numer. Methods Fluids 20 (1995), no. 8-9, 1081-1106 https://doi.org/10.1002/fld.1650200824
  14. W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, Reproducing Kernel Particle Methods for Structural Dynamics, Internat. J. Numer. Methods Engrg. 38 (1995), no. 10, 1655-1679 https://doi.org/10.1002/nme.1620381005
  15. W. K. Liu, S. Li, and T. Belytschko, Moving Least Square Reproducing Ker- nel Methods (I) Methodology and Convergence, Comput. Methods Appl. Mech. Engrg. 143 (1997), no. 1-2, 113{154 https://doi.org/10.1016/S0045-7825(96)01132-2
  16. W. K. Liu and Y. Chen, Wavelet and Multiple Scale Reproducing Kernel Methods, Internat. J. Numer. Methods Fluids 21 (1995), no. 10, 901-931 https://doi.org/10.1002/fld.1650211010
  17. Y. Y. Lu, T. Belytschko, and L. Gu, A New Implementation of the Element Free Galerkin Method, Comput. Methods Appl. Mech. Engrg. 113 (1994), no. 3-4, 397-414 https://doi.org/10.1016/0045-7825(94)90056-6
  18. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, Berlin, 1984
  19. J. M. Melenk and I. Babu.ska, The Partition of Unity Finite Element Method : basic theory and applications, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 289-314 https://doi.org/10.1016/S0045-7825(96)01087-0
  20. B. Nayroles, G. Touzot, and P. Villon, Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements, Comput. Mech. 10 (1992), 307- 318 https://doi.org/10.1007/BF00364252