References
- ARNOLD, B. C., BEAVER, R. J., GROENEVELD, R. A. AND MEEKER, W. Q. (1993). 'The nontruncated marginal of a truncated bivariate normal distribution', Psychometrika, 58, 471-488 https://doi.org/10.1007/BF02294652
- AZZALINI, A. (1985). 'A class of distributions which includes the normal ones'. Scandinavian Journal of Statistics, 12, 171-178
- BRANCO, M. D. AND DEY, D. K. (2001). 'A general class of multivariate skew-elliptical distributions', Journal of the Multivariate Analysis, 79, 99-113 https://doi.org/10.1006/jmva.2000.1960
- BAYARRI, M. J. AND DEGROOT, H. M. (1992). 'A BAD view of weighted distribution and selection models', Bayesian Statistics, Oxford University Press, Oxford
- CHIB, S. AND GREENBERG, E. (1995). 'Understanding the Metropolis-Hastings Algorithm', The American Statistician, 19, 327-335
- COWLES, M. AND CARLIN, B. (1996). 'Markov chain Monte Carlo diagnostics: A comparative review', Journal of the American Statistical Association, 91, 883-904 https://doi.org/10.2307/2291683
- DEVROYE, L. (1986). Non-Uniform Random Variate Generator, Springer Verlag, New York
- DUNNETT, C. W. AND SOBEL, M. (1954). 'A bivariate generalization of Student's t-distribution, with tables for certain special cases', Biometrika, 41, 153-169 https://doi.org/10.1093/biomet/41.1-2.153
- FANG, K. T., KOTZ, S. AND NG, K. W. (1990). Symmetric Multivariate and Related Distributions, Chapman & Hall, New York
- FANG, K. T. AND ZHANG, Y. T. (1990). Generalized Multivariate Analysis, Springer-Verlag, New York
- GELMAN, A. ROBERT, G. O. AND GILKS, W. R. (1996). 'Efficient Metropolis jumping rules', Bayesian Statistics, Oxford University Press, Oxford
- GUSTAFSON, P. (1998). 'A guided walk Metropolis algorithm', Statistics and Computing, 8, 357-364 https://doi.org/10.1023/A:1008880707168
- HENZE, N. (1986). 'A probabilistic representation of the Skew-normal distribution', Scandinavian Journal of Statistics, 13, 271-275
- JOHNSON, N. L., KOTZ, S. AND BALAKRISHNAN, N. (1994). Continuous Univariate Distributions, John Wiley & Sons, New York
- KIM, H. J. (2002). 'Binary regression with a class of skewed t link models', Communications in Statistics: Theory and Methods, 31, 1863-1886 https://doi.org/10.1081/STA-120014917
- KIM, H. J. (2005). 'On Bayesian estimation and properties of the marginal distribution of a truncated bivariate t-distribution', Journal of the Korean Statistical Society, 34, 245-261
- MA, Y., GENTON, M. G. AND TSIATIS, A. (2005). 'Locally efficient semiparametric estimators for generalized skew-elliptical distributions', Journal of the American Statistical Association, 100, 980-989 https://doi.org/10.1198/016214505000000079
- RAO, C. R. (1985). 'Weighted distributions arising out of methods of ascertainment: What population does a sample represent ?', A Celebration of Statistics: The ISI Centenary Volume (A. G. Atkinson and S. E. Fienberg, eds.), Springer, New York
- ROBERT, G. O., GELMAN, A. AND GILKS, W. R. (1997). 'Weak convergence and optimal scaling of random walk Metropolis algorithm', Annals of Applied Probability, 7, 110-120 https://doi.org/10.1214/aoap/1034625254
- ZACKS, S (1981). Parametric Statistical Inference, Pergamon Press, Oxford