Autonomous, Scalable, and Resilient Overlay Infrastructure

  • Published : 2006.12.30

Abstract

Many distributed applications build overlays on top of the Internet. Several unsolved issues at the network layer can explain this trend to implement network services such as multicast, mobility, and security at the application layer. On one hand, overlays creating basic topologies are usually limited in flexibility and scalability. On the other hand, overlays creating complex topologies require some form of application level addressing, routing, and naming mechanisms. Our aim is to design an efficient and robust addressing, routing, and naming infrastructure for these complex overlays. Our only assumption is that they are deployed over the Internet topology. Applications that use our middleware will be relieved from managing their own overlay topologies. Our infrastructure is based on the separation of the naming and the addressing planes and provides a convergence plane for the current heterogeneous Internet environment. To implement this property, we have designed a scalable distributed k-resilient name to address binding system. This paper describes the design of our overlay infrastructure and presents performance results concerning its routing scalability, its path inflation efficiency and its resilience to network dynamics.

Keywords

References

  1. F. Teraoka, Y. Yokote, and M. Tokoro, 'A network architecture providing host migration transparency,' in Proc. ACM SIGCOMM'91, 1991
  2. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, 'The design and implementation of an intentional naming system,' in Proc. 17th ACM SOSP'99, 1999
  3. D. Magoni, 'A scalable and unifying architecture for deploying advanced protocols in the internet,' in Proc. 10th Int. Conf. Telecommun. 2003, Papeete, Tahiti, French Polynesia, Feb. 2003, pp. 1001-1007
  4. P. Francis and R. Gummadi, 'Ipnl: A nat-extended Internet architecture,' in Proc. ACM SIGCOMM 2001, 2001
  5. I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, 'Internet indirection infrastructure,' in Proc. ACM SIGCOMM 2002, 2002
  6. A. Snoeren and H. Balakrishnan, 'An end-to-end approach to host mobility,' in Proc. 6th ACM MobiCom 2000, 2000
  7. A. Viana, M. D. de Amorim, S. Fdida, and J. F. Rezende, 'Indirect routing using distributed location information,' in Proc. IEEE PerCom 2003, Mar. 2003, pp. 224-234
  8. Y. H. Chu, S. Rao, S. Seshan, and H. Zhang, 'Enabling conferencing applications on the internet using an overlay multicast architecture,' in Proc. ACM SIGCOMM 2001, Aug. 2001
  9. S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller, 'Construction of an efficient overlay multicast infrastructure for real-time applications,' in Proc. IEEE INFOCOM 2003, 2003
  10. G.-I. Kwon and J. Byers, 'Roma: Reliable overlay multicast with loosely coupled TCP connections' in Proc. IEEE INFOCOM 2004, Mar. 2004
  11. D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, 'Resilient overlay networks,' in Proc. 18th ACM SOSP, Oct. 2001
  12. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, 'Chord: A scalable peer-to-peer lookup service for Internet applications,' in Proc. ACM SIGCOMM 2001, Aug. 2001, pp. 149-160
  13. M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, 'Security for structured peer-to-peer overlay networks,' in Proc. 5th OSDI 2002, Dec. 2002
  14. T. Eilam, C. Gavoille, and D. Peleg, 'Compact routing schemes with low stretch factor,' in Proc. 17th ACM Symp. Principles of Distributed Computing, Aug. 1998, pp. 11-20
  15. L. Cowen, 'Compact routing with minimum stretch,' in Proc. 10th ACM SIAM Symp. Discrete Algorithms, Jan. 1999
  16. D. Krioukov, K. Fall, and X. Yang, 'Compact routing on internet-like graphs,' in Proc. IEEE INFOCOM 2004, Mar. 2004
  17. Z. Li and P. Mohapatra, 'Impact of topology on overlay routing service,' in Proc. IEEE INFOCOM 2004, Mar. 2004
  18. P. Mockapetris, 'Domain names-implementation and specification,' RFC, IEFT. Nov. 1987
  19. S. Kent and R. Atkinson, 'Security architecture for the internet protocol,' RFC 2401, IETF, Nov. 1998
  20. S. Kent and R. Atkinson, 'IP encapsulating security payload (esp),' RFC 2406, IETF, Nov. 1998
  21. M. Hoerdt and D. Magoni, 'Network cartographer (nec),' Universite Louis Pasteur, available at https://dpt-info.u-strasbg.fr/-magoni/nec/
  22. M. Hoerdt and D. Magoni, 'Completeness of the Internet core topology collected by a fast mapping software,' in Proc. 11th Int. Conf. Software, Telecommun. and Computer Networks, Split, Croatia, Oct. 2003, pp. 257-261
  23. A. M. Law and W. D. Kelton, Simulation Modelling and Analysis, 3rd ed., McGraw-Hill, 2000
  24. D. Magoni, 'Network manipulator(nem),' Universite Louis Pasteur, available at https://dpt-info.u-strasbg.fr/-magoni/nem/
  25. D. Magoni, 'Hierarchical addressing and routing mechanisms for distributed applications over heterogeneous networks.' in Proc. 3rd Int. Conf. Computational Science-Workshop on Innovative Solutions for Grid Computing, Melbourne, Australia, June 2003, pp. 1093-1102
  26. D. Magoni, 'Dharma,' Universite Louis Pasteur, available at https://dpt-info.u-strasbg.fr/-magoni/dharma/